簡易檢索 / 詳目顯示

研究生: 陳光裕
Guang-Yu Chen
論文名稱: 吸附助效甲烷蒸氣重組反應中氧化鈣吸附劑對鎳鑭铈鋯觸媒的影響
Enhanced Performance of Ni/LaZrCeOx Catalyst in Sorption Enhanced Steam Reforming of Methane using CaO as the Sorbent
指導教授: 林昇佃
Shawn-D. Lin
口試委員: 余慶聰
Ching-Tsung Yu
鍾博文
Po-Wen Chung
李豪業
Hao-Yeh Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 116
中文關鍵詞: 吸附助效甲烷蒸氣重組鎳觸媒氧化鈣吸附劑
外文關鍵詞: Sorption Enhanced Process, Steam Reforming of Methane, Ni Catalyst, CaO sorbent
相關次數: 點閱:329下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

氫能是新興能源中對環境影響程度最低的乾淨能源,現今氫氣的生成主要來自於甲烷蒸氣重組反應(SRM),為降低甲烷蒸氣重組反應產物的分離與純化成本,吸附助效甲烷蒸氣重組反應(SESRM)在近年來成為備受注目的開發技術之一。本研究探討Ni/LaCeZrOx觸媒的放量製備(5g批量)步驟,在測試與原製備批量觸媒有相似觸媒晶相、孔洞結構與SRM活性後,將5g批量合成Ni/LZC觸媒,混合CaO吸附劑後,進行500和600℃持溫SESRM反應。藉由計算修正後,在CO2破出前,600℃反應甲烷轉化率可突破平衡轉化率限制達到93%,且H2產物分布也高達99.5%,在CO2破出後,600℃反應甲烷轉化率仍高於為含吸附劑觸媒的反應結果,推測Ni/LZC觸媒受到CaO吸附劑修飾以至於有更好的反應活性,藉由XRD與粒徑分析發現Ni-Phase粒徑縮小,TPR分析觀察到還原峰偏移的現象,利用含浸法合成CaO-Ni/LZC觸媒後進行XRD與TPR分析,同樣觀察到CaO-Ni/LZC觸媒與含吸附劑觸媒有相似的分析結果,因此合理推測CaO吸附劑對Ni/LZC有修飾的效果。CaO-Ni/LZC觸媒的SRM結果中發現,轉化率受平衡轉化率限制,而未觀察到與含吸附劑觸媒相同的修飾後反應結果,但在WGS實驗中可以看出CaO-Ni/LZC觸媒與含吸附劑觸媒在CO2破出後,Ca對Ni/LZC觸媒的修飾效果。


Sorption enhanced steam reforming of methane (SESRM) process is a technique which combines steam reforming process and CO2 separation process. It has the advantages of producing high purity H2 and CO2, and it can also be applied to break thermodynamics limitation. The CO2 sorbent is mixed with the SRM catalyst and sequential operation of H2 production by SRM with CO2 absorption and then CO2 desorption for sorbent regeneration is usually required. In this study, CaO is used as the CO2 sorbent to mix with Ni/La-Ce-Zr oxide catalyst for methane steam reforming at 500-600℃. Detailed analysis of SESRM process indicates that the methane conversion can break the equilibrium limitation and reaches 93% at 600℃ in the sorbent absorption (pre-breakthrough) period, and the H2 concentration is nearly 100%. After the CO2 breakthrough, the methane conversion is found still higher than the SRM without sorbent. This can be partly attributed to that sorbent still maintains ability to partially capture CO2 after the breakthrough and partly to that the catalyst activity is enhanced by CaO. The latter is supported by the negligible coke deposition and a corrected data analysis indicating an enhanced methane conversion. Also XRD results show that the Ni-phase particle size become smaller after the addition of CaO and TPR reduction peak shift , presumably due to Ca influence.

摘要 i 目錄 iii 圖目錄 vi 表目錄 ix 第1章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.2.1 甲烷蒸氣重組反應(Steam Reforming of Methane) 3 1.2.2 吸附助效甲烷蒸氣重組(Sorption Enhanced SRM, SESRM) 4 1.2.3 鹼金屬與鹼土金屬修飾Ni觸媒 6 1.3 研究目的與方法 7 第2章 研究架構與方法 9 2.1 實驗架構與方法 9 2.2 藥品與儀器設備 10 2.2.1 藥品 10 2.2.2 氣體 11 2.2.3 使用儀器 12 2.3 觸媒製備 13 2.3.1 共沉澱法製備Ni/LZC觸媒 13 2.3.2 初濕含浸法製備CaO-Ni/LZC觸媒 14 2.4 觸媒特性分析 15 2.4.1 X光粉末繞射儀 15 2.4.2 程溫還原反應 16 2.4.3 比表面積與孔隙測定儀 16 2.4.4 熱重分析儀 17 2.4.5 感應式耦合電漿原子放射光譜儀 17 2.4.6 X光吸收光譜 18 2.4.7 甲烷蒸汽重組反應 18 2.4.8 吸附助效甲烷轉化率計算修正 19 第3章 結果與討論 22 3.1 大小批次觸媒共沉澱法合成參數 22 3.1.1 比表面積與孔徑分析比較 24 3.1.2 XRD分析比較 26 3.1.3 甲烷蒸氣重組反應特性比較 30 3.1.4 Ni/LZC合成方法再現性 34 3.2 Ni/LZC觸媒混合CaO吸附劑應用於吸附助效甲烷蒸氣重組 38 3.2.1 吸附助效甲烷蒸氣重組 38 3.2.2 CaO吸附劑捕捉CO2特性 47 3.2.3 SESRM反應後觸媒TGA積碳分析 51 3.2.4 吸附劑與Ni/LZC觸媒的交互作用 57 3.2.5 XRD分析反應前與反應後含吸附劑Ni/LZC觸媒變化 59 3.2.6 CaO-Ni/LZC觸媒的TPR分析 62 3.2.7 BET & BJH 分析CaO對Ni/LZC觸媒的孔洞影響 65 3.2.8 含吸附劑Ni/LZC觸媒進行SEWGS反應測試 71 3.2.9 SESRM出口氣(Dry basis)分析 77 3.3 含浸鹼土金屬Ca修飾Ni/LZC觸媒 81 3.3.1 CaO-Ni/LZC觸媒TPR分析結果 82 3.3.2 CaO-Ni/LZC觸媒XRD分析結果 85 3.3.3 CaO-Ni/LZC觸媒進行SRM分析 88 3.3.4 綜合討論 92 第4章 結論 94 第5章 附錄 100

Reference

[1] D. Mei et al., "Highly active and stable MgAl2O4-supported Rh and Ir catalysts for methane steam reforming: A combined experimental and theoretical study," Journal of Catalysis, vol. 316, pp. 11-23, 2014, doi: 10.1016/j.jcat.2014.04.021.
[2] K.-W. J. Zhong-Wen Liu , Hyun-Seog Roh, Sang-Eon Park, "Hydrogen production for fuel cells through methane reforming at low temperatures," Journal of Power Sources, vol. 111, no. 2, pp. 283-287, 2002.
[3] Y. Zhang, W. Wang, Z. Wang, X. Zhou, Z. Wang, and C.-J. Liu, "Steam reforming of methane over Ni/SiO2 catalyst with enhanced coke resistance at low steam to methane ratio," Catalysis Today, vol. 256, pp. 130-136, 2015, doi: 10.1016/j.cattod.2015.01.016.
[4] S. D. Angeli, L. Turchetti, G. Monteleone, and A. A. Lemonidou, "Catalyst development for steam reforming of methane and model biogas at low temperature," Applied Catalysis B: Environmental, vol. 181, pp. 34-46, 2016, doi: 10.1016/j.apcatb.2015.07.039.
[5] Y. Matsumura and T. Nakamori, "Steam reforming of methane over nickel catalysts at low reaction temperature," Applied Catalysis A: General, vol. 258, no. 1, pp. 107-114, 2004, doi: 10.1016/j.apcata.2003.08.009.
[6] A. L. Ortiz and D. P. Harrison, "Hydrogen Production Using Sorption-Enhanced Reaction," Industrial and Engineering Chemistry, vol. 40, pp. 5102-5109, 2001.
[7] A. L. García-Lario, M. Aznar, G. S. Grasa, and R. Murillo, "Evaluation of process variables on the performance of Sorption Enhanced Methane Reforming," Journal of Power Sources, vol. 285, pp. 90-99, 2015, doi: 10.1016/j.jpowsour.2015.03.075.
[8] M. Z. Memon et al., "Alkali Metal CO2 Sorbents and the Resulting Metal Carbonates: Potential for Process Intensification of Sorption-Enhanced Steam Reforming," Environmental Science & Technology, vol. 51, no. 1, pp. 12-27, 2016, doi: 10.1021/acs.est.6b04992.
[9] A. Di Giuliano and K. Gallucci, "Sorption enhanced steam methane reforming based on nickel and calcium looping: a review," Chemical Engineering and Processing - Process Intensification, vol. 130, pp. 240-252, 2018, doi: 10.1016/j.cep.2018.06.021.
[10] M. Shokrollahi Yancheshmeh, H. R. Radfarnia, and M. C. Iliuta, "High temperature CO2 sorbents and their application for hydrogen production by sorption enhanced steam reforming process," Chemical Engineering Journal, vol. 283, pp. 420-444, 2016, doi: 10.1016/j.cej.2015.06.060.
[11] J.-I. Yang and J.-N. Kim, "Hydrotalcites for adsorption of CO2 at high temperature," Korean Journal of Chemical Engineering., vol. 23, pp. 77-80, 2006.
[12] Y. J. Min, S.-M. Hong, S. H. Kim, K. B. Lee, and S. G. Jeon, "High-temperature CO2 sorption on Na2CO3-impregnated layered double hydroxides," Korean Journal of Chemical Engineering, vol. 31, no. 9, pp. 1668-1673, 2014, doi: 10.1007/s11814-014-0116-1.
[13] Y. J. Wu, P. Li, J. G. Yu, A. F. Cunha, and A. E. Rodrigues, "K-Promoted Hydrotalcites for CO2Capture in Sorption Enhanced Reactions," Chemical Engineering & Technology, vol. 36, no. 4, pp. 567-574, 2013, doi: 10.1002/ceat.201200694.
[14] A. M. Kierzkowska, L. V. Poulikakos, M. Broda, and C. R. Müller, "Synthesis of calcium-based, Al2O3-stabilized sorbents for CO2 capture using a co-precipitation technique," International Journal of Greenhouse Gas Control, vol. 15, pp. 48-54, 2013, doi: 10.1016/j.ijggc.2013.01.046.
[15] E. P. Reddy and P. G. Smirniotis, "High-Temperature Sorbents for CO2 Made of Alkali Metals Doped on CaO Supports," The Journal of Physical Chemistry., vol. 108, pp. 7794-7800, 2004.
[16] M. L. Ang et al., "Highly Active Ni/xNa/CeO2 Catalyst for the Water–Gas Shift Reaction: Effect of Sodium on Methane Suppression," ACS Catalysis, vol. 4, no. 9, pp. 3237-3248, 2014, doi: 10.1021/cs500915p.
[17] F. Frusteri et al., "Steam reforming of bio-ethanol on alkali-doped Ni/MgO catalysts: hydrogen production for MC fuel cell," Applied Catalysis A: General, vol. 270, no. 1-2, pp. 1-7, 2004, doi: 10.1016/j.apcata.2004.03.052.
[18] J. H. Song, S. J. Han, J. Yoo, S. Park, D. H. Kim, and I. K. Song, "Hydrogen production by steam reforming of ethanol over Ni–X/Al 2 O 3 –ZrO 2 (X = Mg, Ca, Sr, and Ba) xerogel catalysts: Effect of alkaline earth metal addition," Journal of Molecular Catalysis A: Chemical, vol. 415, pp. 151-159, 2016, doi: 10.1016/j.molcata.2016.02.010.
[19] S. Scire`, C. Crisafuullfi, R. Maggiore, S. Minico, and S. Galvagno, "Effect of the acid–base properties of Pd–Ca/Al2O3 catalysts on the selective hydrogenation of phenol to cyclohexanone: FT-IR and TPD characterization," Applied Surface Science, vol. 136, pp. 311–320, 1998.
[20] K. F. M. Elias, A. F. Lucrédio, and E. M. Assaf, "Effect of CaO addition on acid properties of Ni–Ca/Al2O3 catalysts applied to ethanol steam reforming," International Journal of Hydrogen Energy, vol. 38, no. 11, pp. 4407-4417, 2013, doi: 10.1016/j.ijhydene.2013.01.162.
[21] T. L. Yu, "Ni and Co on La-Zr-Ce Defect Fluorite Structure for Mid-Temperature Methane Reforming," Master Thesis, Chemical Engineering, National Taiwan University of Science and Technology, Taiwan, Taipei, 2019.
[22] L. C. Lin, "Mixed oxide supported Ni catalysts for mid-temperature methane steam reforming," Master Thesis, Chemical Engineering, National Taiwan University of Science and Technology, Taiwan, Taipei, 2016.
[23] J. A. Calles, A. Carrero, A. J. Vizcaíno, and L. García-Moreno, "Hydrogen production by glycerol steam reforming over SBA-15-supported nickel catalysts: Effect of alkaline earth promoters on activity and stability," Catalysis Today, vol. 227, pp. 198-206, 2014, doi: 10.1016/j.cattod.2013.11.006.
[24] Z. Mirghiasi, F. Bakhtiari, E. Darezereshki, and E. Esmaeilzadeh, "Preparation and characterization of CaO nanoparticles from Ca(OH)2 by direct thermal decomposition method," Journal of Industrial and Engineering Chemistry, vol. 20, no. 1, pp. 113-117, 2014, doi: 10.1016/j.jiec.2013.04.018.
[25] T. Kim and J. Olek, "Effects of Sample Preparation and Interpretation of Thermogravimetric Curves on Calcium Hydroxide in Hydrated Pastes and Mortars," Transportation Research Record: Journal of the Transportation Research Board, vol. 2290, no. 1, pp. 10-18, 2012, doi: 10.3141/2290-02.
[26] Z. Hou, "Characterization of Ca-promoted Ni/α-Al2O3 catalyst for CH4 reforming with CO2," Applied Catalysis A: General, vol. 253, no. 2, pp. 381-387, 2003, doi: 10.1016/s0926-860x(03)00543-x.
[27] P. CHEN, Z.-Y. HOU, and X.-M. ZHENG, "Production of synthesis gas via methane reforming with CO2 on Ni-SiO2 catalysts promoted by alkali and alkaline earth metals," Chinese Journal of Chemistry, vol. 23, p. 847—851, 2005.
[28] I. Pashalidis and C. R. Theocharis, "Investigations on the Surface Properties of Pure and Alkali or Alkaline Earth Metal Doped Ceria," in Characterisation of Porous Solids V, (Studies in Surface Science and Catalysis, 2000, pp. 643-652.
[29] H. Song and U. S. Ozkan, "Changing the Oxygen Mobility in Co/Ceria Catalysts by Ca Incorporation: Implications for Ethanol Steam Reforming," The Journal of Physical Chemistry., vol. 114, pp. 3796–3801, 2010.

QR CODE