簡易檢索 / 詳目顯示

研究生: 邱泓翔
Hong-Siang Ciou
論文名稱: 以振動式球拋光製程作鏡面不銹鋼之自動化表面精加工研究
Automated Surface Finish of Mirror-Like Stainless Steel Using Vibrated Spherical Polishing Process
指導教授: 修芳仲
Fang-Jung Shiou
口試委員: 黃緒哲
Shiuh-Jer Huang
陳炤彰
Chao-Chang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 155
中文關鍵詞: 振動式球拋光表面粗糙度壓電致動器球擠光
外文關鍵詞: vibrated spherical polishing, surface roughness, piezoelectric actuator, ball burnishing
相關次數: 點閱:439下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文為於CNC切削中心機上發展自動化振動式球拋光製程。以田口實驗計劃法對STAVAX塑膠模具用鏡面不銹鋼找出球擠光與振動式球拋光最佳參數,另針對振動式與無振式拋光棒磨耗改善進行討論,將最佳參數應用於經逆向工程建構之3D自由曲面,以得知3D自由曲面表面粗糙度改善情況。
    研究中以L9與L18直交表進行擠光與振動式球拋光實驗,以探討各加工參數對於表面粗糙度影響,並找出最佳加工參數,其中振動式球拋光是以壓電致動器產生微幅振動,並以單軸振動加工參數改善拋光加工時拋光棒使用壽命問題。經實驗結果得知最佳球擠光加工參數為:擠光力500 N、進給200 mm/min、間距20 μm與擠光道次1次。最佳振動球拋光加工參數為:拋光道次1次、轉速12000 rpm、間距20 μm、磨料粒徑0.5 μm、振幅50 μm、拋光棒直徑8 mm、拋光液比例1: 20與振動頻率800 Hz、進給100 mm/min。先後利用平面擠光與平面振動式拋光加工製程,可得到擠光加工後表面粗糙度為Ra 0.102 μm,經振動式拋光加工後其表面粗糙度值為Ra 0.031 μm (Rmax 0.341 μm),而無振式拋光加工其表面粗糙度值為Ra 0.027 μm(Rmax 0.280 μm)。
    拋光棒體積磨耗改善率為71.934 %。表示振動加工可降低拋光棒磨耗,有效延長拋光棒壽命。將最佳參數應用於F-theta自由曲面上其振動式拋光表面粗糙度值Ra 0.0224 μm (Ry 0.200 μm),無振式拋光表面粗糙度值Ra 0.0216 μm (Ry 0.215 μm)。應用於非球面鏡片自由曲面上振動式球拋光表面粗糙度值Ra 0.0296 μm (Ry 0.26 μm)。


    The objective of this research is to develop a vibrated spherical polishing system assisted by a piezoelectric actuator on a machining center, in order to improve the surface roughness of STAVAX plastic mold stainless steel and to reduce the volume wear of the polishing ball. The optimal plane surface ball burnishing and vibrated spherical polishing parameters have been determined after conducting the Taguchi’s L9 and L18 matrix experiments. The optimal plane polishing parameters for the STAVAX plastic mold stainless steel were the combination of the polishing times of 1, the polishing speed of 12,000 rpm, the abrasives of aluminum oxide(Al2O3) with grid diameter of 0.5 μm, slurry concentration of 1:20, the feed of 100 mm/min, stepover distance of 20 μm, the depth of penetration of 50 μm, and vibration frequency of 800 Hz. The surface roughness of the test specimens colud be improved from about Ra 0.531 μm to Ra 0.102 μm in average using the optimal plane surface ball burnishing parameters. The surface roughness of the burnished specimen can be further improved to Ra 0.031 μm(Rmax 0.341 μm) using the optimal plane surface vibrated spherical polishing process, and Ra 0.027 μm (Rmax 0.280 μm) using the optimal plane surface polishing process with no vibration . The improvement of volume wear of the polishing ball was about 72 % using the vibrated polishing process compared with the non-vibrated polishing process. Applying the optimal plane surface ball burnishing and vibrated spherical polishing parameters sequentially to a fine milled freeform surface carrier of a F-theta scan lens, the surface roughness of Ra 0.0224 μm (Ry 0.200 μm) on the freeform surface is obtainable,and Ra 0.0216 μm (Ry 0.215 μm) using polishing process with no vibration. Applying the optimal plane surface ball burnishing and vibrated spherical polishing parameters sequentially to a fine milled carrier of an aspherical lens surface, the surface roughness of Ra 0.0296 μm (Ry 0.26 μm) on the freeform surface is obtainable.

    第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.3 研究方法與論文架構 6 第二章 相關理論介紹 8 2.1 研磨加工原理 8 2.2 球擠光加工原理 10 2.2.1 擠光力量 11 2.2.2 擠光速度 12 2.2.3 進給 12 2.2.4 擠光球材質 13 2.3 球拋光加工之原理 13 2.3.1 轉速 14 2.3.2 磨料 14 2.3.3 進給速率 15 2.3.4 間距 15 2.3.5 Z軸進深 16 2.4 振動加工原理 16 2.5 壓電材料 17 2.5.1 壓電效應 18 2.6 表面粗糙度 19 2.6.1 表面粗糙度定義 19 2.6.2 表面粗糙度參數之表示法 20 第三章 田口式實驗計劃法 21 3.1 田口實驗計劃法簡介 21 3.2 參數設計 21 3.3 因子的分類 23 3.3.1 信號因子 23 3.3.2 雜音因子 23 3.3.3 可控因子 24 3.3.4 品質損失函數 24 3.4 信號雜訊比 26 3.5 變異數分析 28 3.6 直交表(Orthogonal Array)介紹 30 3.7 最適條件下的最佳預估與確認實驗 32 3.8 誤差項百分比( ) 32 第四章 實驗方法與程序 34 4.1 實驗方法 34 4.2 實驗試件介紹及特性 39 4.3 擠光、振動式拋光加工參數 41 4.4 3D載具之非球面鏡片與F-theta鏡片自由曲面 42 4.4.1 非球面鏡片之簡介 42 4.4.2 F-theta鏡片建構 47 4.5 實驗設備 49 4.5.1 MV-3A立式綜合切削中心機 49 4.5.2 切削動力計 50 4.5.3 微幅致動控制設備 51 4.5.4 擠、拋光工具與夾治具 54 4.5.5 電動研磨機 56 4.5.6 振動拋光機構之設計、製作與測試 56 4.5.7 觸發式探頭(MP700探頭) 68 4.5.8 表面粗糙度量測儀 69 4.5.9 Cyclone 掃瞄式三次元量床 70 4.5.10 光學顯微鏡 71 4.5.11 原子力顯微鏡 71 4.5.12 彩色雷射3D立體形狀量測顯微鏡 72 4.6 實驗規劃 73 第五章 實驗結果與分析 75 5.1 擠光加工田口實驗 75 5.1.1 S/N Ratio 計算 76 5.1.2 ANOVA 變異數分析 79 5.1.3 表面粗糙度預測值 82 5.1.4 全因子實驗 83 5.1.5 驗證實驗 84 5.2 擠光參數對表面粗糙度影響 86 5.2.1 擠光力 86 5.2.2 進給 87 5.2.3 間距 88 5.2.4 擠光道次 88 5.3 振動式拋光加工田口實驗 89 5.3.1 S/N Ratio計算 91 5.3.2 ANOVA變異數分析 94 5.3.3 表面粗糙度預測值 95 5.4 振動式拋光與無振式拋光加工比較 96 5.4.1 無振式拋光加工 96 5.4.2 拋光棒之磨耗體積改善分析 100 5.5 振動式拋光加工參數對表面粗糙度的影響 101 5.5.1 拋光次數 102 5.5.2 轉速 102 5.5.3 間距 102 5.5.4 磨料粒徑 103 5.5.5 振幅 103 5.5.6 拋光棒直徑 103 5.5.7 拋光液 104 5.5.8 振動頻率 104 5.6 分析簡化球型拋光系統 104 5.7 光學顯微鏡與原子力顯微鏡之表面組織 108 5.7.1 光學顯微鏡下研磨、擠光、振動式拋光後之顯微 組織 108 5.7.2 AFM下擠光、振動式與無振式拋光之表面顯微 組織 109 5.8 研磨、擠光與拋光最佳化參數應用於自由曲面加工 116 5.8.1 F-theta自由曲面加工 116 5.8.2 非球面鏡片自由曲面加工 130 第六章 結論與未來展望 139 6.1 結論 139 6.2 未來展望 141 參考文獻 142 附錄(一) 常見表面粗糙度參數之表示法 147 附錄(二) F分佈表 153 作者簡介 155

    1. Satio, K., ’’ Finishing and Polishing of Free-From Surface’’, Bull. Japan Soc.of Prec.Eng., Vol. 18, No.2, pp. 104-109, June 1984.
    2. Mizugaki, Y., Sakamoto, M., ’’Development of a Metal-Mold Polishing Robot System with Contact Pressure Control Using CAD/CAM Data”, Annals of the CIRP Vol. 39/1, pp523-526, 1990.
    3. Dinauer, W. R., Duffie, N. A.,Philpott, M. L., ’’Error Compensation Algorithms for Sculptured Surface Production’’, Transactions of the ASME, Journal of Engineering for Industry, Vol. 116/145, pp. 144-152, 1994.
    4. 范光照,黃偉明,”精密曲面加工與機上量測系統的研製”,中國機械工程學會第14屆全國學術研討會論文集,1997.
    5. 李文讀,’’研磨與球擠光之製程對自由曲面模具之表面精加工之研
    究’’,台灣科技學機械工程學系碩士論文,2001.
    6. Rajasekariah, R., Vaidyanathan , S., ’’ Increasing the Wear- Resistance of Steel Components by Ball Burnishing’’, Wear, 34, pp. 183-188, 1975.
    7. LOH, N. H., TAM, S. C., Miyazawa, S., ’’A study of the effects of ball-burnishing parameters on surface roughness using factorial design’’ Journal of Mechanical Working Technology, Vol . 18, No.1, Jan. pp. 53-61, 1989.
    8. Nemat, M., Lyons, A. C., ’’An Investigation of the Surface Topography of Ball Burnished Mild Steel and Aluminium”, Int. J. Adv. Manuf. Technol., 16, pp. 469-473, 2000.
    9. Liviu, L., Sorin, N. V., Ioan, M., ”Effect of Working Parameters on Surface Finish in Ball-Burnishing of Hardened Steels”, Precision Engineering, 2005.
    10. Sasaki, K., Miyoshi, T., Saitoh, K., Okada, S., ’’ Development and Construction of Polishing Apparatus’’, Knowledge Acquisition and Automation of Polishing Operation for Injection Mold(3rd Report), pp. 93-99, 1992.
    11. Furukawa, T., Rye, D. C., Dissanayake, M. W. M. G. D. and Jbarratt, A., “Automated Polishing of an Unknow Three-Dimensional Surface”, Robotics and Computer -integrated Manufacturing, Vol. 12, No. 3, pp. 261-279, 1996.
    12. 李伯益,”撓性夾持機構應用在研磨與拋光之研究”,淡江大學 機械工程學系碩士論文,1998.
    13. 黃健勝,”使用撓性機構以降低拋光力量變化”,淡江大學機械工程學系碩士論文,1999.
    14. 張昭龍,蔡明俊,黃建峰,”自動化模具拋光系統的幾何架構及路徑規劃”,中國機械工程學會第十九屆全國學術研討會,國立成功大學,雲林,台灣,2002.
    15. 修芳仲,鄭境明,”對模具用鋼之表面施以球擠光與電鍍加工程,並利用田口方法作拋光加工之最佳參數決定”,中國機械工程學會第二十一屆全國學術研討會,國立中山大學,高雄,台灣,2004.
    16. Fengfeng, X., David, Z., ”Modeling Surface Roughness in the Stone Polishing Process”, International Journal of Machine Tools & Manufacture, vol. 45, pp. 365-372, 2005.
    17. Horst Weber, Jurgen Herberger, Rolf Pilz, ” Turning of Machinable Glass Ceramics with An Ultrasonically Vibration Tool” , Annals of the CIRP, vol. 33/1, pp. 85- 87, 1984.
    18. Eiji Shamoto, Toshimichi Moriwaki, ”Study on Elliptical Vibration Cutting”, Annals of the CIRP, vol. 43/1, pp. 35-38, 1994.
    19. Onikura, H., Ohnishi, O. et. al., “Effects of Ultrasonic Vibration on Machining Accuracy in Microdrilling”, Int. J. JSPE, vol. 30, no.3, pp. 210-216, 1996.
    20. 張淵智,陳國亮,”振動切削技術應用於微銑削之研究”,中國機 械工程學會第16屆學術研討會論文集, pp. 515-522, 1999 .
    21. 賴亮順,’’結合激振及電化學之磨拋削系統研究’’,國立海洋大學 機械與輪機工程學系碩士論文,2003.
    22. 潘冠衛,’’振動加工應用於高速微銑削之研究”,國立雲林科技大 學機械學系碩士論文,2004.
    23. Kalpakjian, Serope,”Manufacturing engineering andtechnology”, 3rd ed., Addison-Wesley publishing company, 1995.
    24. 中國砂輪研磨加工技術叢書編輯委員會編輯,’’研削、研磨技術
    用語辭典’,台北市,中國砂輪公司,1991.
    25. Nagao, T. and Hatamura, Y., ’’Development of a Flexible Grinding System with Six-Axis Force Sensor for Curved Surfaces”, Annals of the CIRP, Vol. 36/1, pp. 215-218, 1987.
    26. Wager, J. Gu, D. ,’’Mechanism of the Grinding Process Influence on Precision Manufacturing”, 5th Int. Conf. on Manuf. Eng. Wollongong , 1990.
    27. 陳建樺,’’塑膠膜壓鑄用鋼之球擠光加工研究",國立台灣科技 大學機械工程學系碩士論文,2001.
    28. Hashimoto, F., ’’Modeling and Optimization of Vibratory Finishing Process’’, CIRP Annals-Manufacturing, Technology Vol. 45, pp 303-306, 1996.
    29. 吳朗,’’電子陶瓷: 壓電’’,全欣科技圖書,pp.1-78,1994.
    30. 張郭益、許全守編著,”精密量測 ”,全華書局,2003年初版.
    31. 范光照編著,”精密量測 ”,高立書局,二版修訂2000.
    32. 蘇朝墩,”產品穩健設計”,中華民國品質學會,1997.
    33. 李輝煌著,“田口方法-品質設計的原理與實務”,高立圖書有限公司,2000.
    34. 陳耀茂,’’田口實驗計劃法’’,滄海書局,1997.
    35. http://www.assab.com.tw/introduction/introduction.html
    36. 莊賀喬,’’非球面鏡片形狀誤差修正之研究’’,國清華大學動機械工程學系碩士論文,2002.
    37. 徐智誠,’’以球擠光與拋光製程做塑膠模具用鏡面不銹鋼之表面 精加工研究’’,國立台灣科技大學機械工程碩士論文,2005
    38. 邱如德,’’以球擠光與拋光製程對自由曲面模具之表面精加工之研究’’,國立台灣科技大學機械工程碩士論文,2002.
    39. Chang, S. H., Du, B. C., "A Precision Piezodriven Micropositioner Mechanism with Large Travel Range", The Review of Scientific Instruments, 69(4), pp. 1785-1791, 1998.
    40. G. H. Martin, ’’Kinematics and Dynamics of Machines’’, McGraw-Hill, New York, 1982.
    41. Meirovitch, Leonard, ’’Principles and Techniques of Vibrations’’, Prentice Hall, New Jersey, 1997.

    QR CODE