簡易檢索 / 詳目顯示

研究生: 林佩珍
Pei-Zhen Lin
論文名稱: 微通道反應器應用於連續生產甲基丙烯酸羥丙酯之研究
Study on Continuous Production of Hydroxypropyl methacrylate with Using Microchannel Reactor
指導教授: 曾堯宣
Yao-Hsuan Tseng
口試委員: 曾堯宣
Yao-Hsuan Tseng
李豪業
Hao-Yeh Lee
何郡軒
Jinn-Hsuan Ho
蔣雅郁
Ya-Yu Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 97
中文關鍵詞: 微反應器環氧丙烷甲基丙烯酸甲基丙烯酸羥丙酯
外文關鍵詞: Microreactor, propylene oxide, methacrylic acid, hydroxypropyl methacrylate
相關次數: 點閱:291下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

自1980年代微通道的概念提出後,微流體控制技術已有長足發展。以混合、換熱、分離和反應為主的微操作單元具有三高(高反應選擇性、高品質、高安全)、三低(低三廢、低爆炸風險、低製造成本)、反應時間短、程序易控制、佔地面積小等優勢,為化工生產發展新的方向。本研究以微反應器系統進行甲基丙烯酸與環氧丙烷開環加成反應,製備甲基丙烯酸羥丙酯,利用微反應器降低製程危險性並發展連續生產製程。
第一階段使用MMRS模組化微反應器系統,以Miprowa微反應器為主體和不同混合的模塊組合而成。以田口實驗法得到最佳的操作條件為:反應溫度為130℃、滯留時間為30 min、環氧丙烷/甲基丙烯酸的莫耳比為 1.1、系統壓力為10 bar,可達成72%以上的甲基丙烯酸轉化率,甲基丙烯酸羥酯選擇率可達90.8%。以氣相層析質譜儀分析產物與副產物,並觀察在微反應器系統中不同操作條件下,對反應的影響以及操作參數限制。
在第二階段中,本研究通過微反應器主體的更換和反應器串聯等的不同系統設計期望增進效果,以更加瞭解微反應系統在不同製程中系統設計的方式,並確認氣液分離現象對反應的負面影響,進一步對其製程開發的可行性與使用時的安全性進行評估,本研究可作為後續微反應器系統設計與應用的參考依據。


Since the concept of microreactor was reported in the 1980s, the microfluidic control technology has developed rapidly. The micro operation units, including mixer, heat exchanger, separator, and reactor, exhibits these characteristics, three H (high reaction selectivity, high quality, high safety), three L (low three wastes, low explosion risk, low manufacturing cost), short reaction time, easy control of the process, and small floor space, resulting in a new direction for chemical production. In this study, the ring-opening addition reaction of methacrylic acid and propylene oxide was carried out in a microreactor system to synthesize hydroxypropyl methacrylate. The manufacture risk and continuous production process were respectively reduced and developed with applying microreactor.
The MMRS modular microreactor system, including major reactor (Miprowa) and variant mixing modules, was applied in the first part. The optima operating conditions obtained by Taguchi experimental design strategy were: 130°C of reaction temperature, 30 minutes of residence time, 1.1 of molar ratio for PO/MAA, and 10 bar of system pressure, resulting in 72.1% of conversion for MAA and 90.8% of selectivity for HPMA. The product and by product were analyzed by gas chromatography (GC) and gas chromatography mass spectrometer(GC-mass). The effects of operation parameters in the microreactor system were investigated to find out the reaction pathway and limitation of operation parameters.
In the second stage, the variant reactor and connection of reactors in series were further applied to promote reaction rate expectantly. The reaction design was further modified and the design concept for different process was confirmed as well. The negative effect of gas-liquid separation phenomenon was observed in the series reactor. The feasibility and safety design of MRT process were evaluated. This study can be used as a reference basis for design and application of microreactor.

目錄 中文摘要 2 ABSTRACT III 致謝 IV 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 甲基丙烯酸烷基酯 2 1.3 研究動機與目的 4 第二章 文獻回顧 5 2.1 甲基丙烯酸羥丙酯的製備 5 2.1.1 直接開環法 5 2.1.2 一步法 8 2.1.3 直接酯化法 9 2.1.4 酯交換法 10 2.1.5 二元醇與甲基丙烯醯氯反應 11 2.1.6 二元醇碳酸酯與甲基丙烯酸反應 11 2.1.7 氯醇法 12 2.1.8 不同方法之比較 13 2.2 微化工技術與微反應器系統 14 2.2.1 微化工技術之基本原理 14 2.2.2 微反應過程強化技術及特色 16 2.2.3 微反應器應用的限制 21 第三章 實驗方法與步驟 22 3.1 實驗設計 22 3.2 實驗藥品 24 3.3 實驗設備與分析儀器 25 3.3.4 實驗設備 25 3.3.5 分析儀器 26 3.4 微反應器系統 28 3.4.1 混合器比較 28 3.4.2 反應器比較 30 3.5 實驗步驟 32 3.5.3 微反應器系統操作流程 32 3.5.4 甲基丙烯酸與環氧丙烷開環加成反應 34 第四章 結果與討論 35 4.1 批次系統 35 4.2 Miprowa系統 41 4.3 RTB系統 61 4.4 Miprowa及RTB系統比較 73 4.5 串聯系統 74 第五章 結論與未來展望 76 5.1 結論 76 5.1.1 反應條件測試 76 5.1.2 反應條件優化 76 5.1.3 反應系統優化 77 5.1.4 系統比較 77 5.2 未來展望 78 5.2.1 反應器串聯結合多段進料設計系統的改良 78 5.2.2 產物純化 78 5.2.3 量產規模計算及相似製程之應用 79 第六章 參考文獻 80

[1] R. Feynman, "December. Plenty of Room at the Bottom," in APS Annual Meeting, 1959.
[2] S. Honary and F. Zahir, "Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 1)," Tropical Journal of Pharmaceutical Research, vol. 12, no. 2, pp. 255-264, 2013.
[3] S. Honary and F. Zahir, "Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 2)," Tropical journal of pharmaceutical research, vol. 12, no. 2, pp. 265-273, 2013.
[4] A. Khitab and M. Tausif Arshad, "Nano construction materials," Reviews on advanced materials science, vol. 38, no. 2, 2014.
[5] M. Holzinger, A. Le Goff, and S. Cosnier, "Nanomaterials for biosensing applications: a review," Frontiers in chemistry, vol. 2, p. 63, 2014.
[6] J. K. Patra, G. Das, L. F. Fraceto, E. V. R. Campos, M. d. P. Rodriguez-Torres, L. S. Acosta-Torres, L. A. Diaz-Torres, R. Grillo, M. K. Swamy, and S. Sharma, "Nano based drug delivery systems: recent developments and future prospects," Journal of nanobiotechnology, vol. 16, no. 1, pp. 1-33, 2018.
[7] J. Burns and C. Ramshaw, "Development of a microreactor for chemical production," Chemical Engineering Research and Design, vol. 77, no. 3, pp. 206-211, 1999.
[8] J. Lerou, M. Harold, J. Ryley, J. Ashmead, T. O'Brien, M. Johnson, J. Perrotto, C. Blaisdell, T. Rensi, and J. Nyquist, "Microfabricated minichemical systems: Technical feasibility," DECHEMA MONOGRAPHIEN, pp. 51-70, 1995.
[9] Y. Weifei, W. Zhiyong, X. Ruijuan, F. Mei, L. Sen, and Y. Guangcheng, "Explosive synthesis: novel intrinsically safe method and application with micro-channel reactor," in Journal of Physics: Conference Series, vol. 1507, no. 2: IOP Publishing, p. 022030, 2020.
[10] W. Ehrfeld, Microsystem Technology for Chemical and Biological Microreactors: Papers of the Workshop on Microsystem Technology, Mainz, 20-21 February, 1995: Organized by DECHEMA and IMM. Vch Verlagsgesellschaft Mbh, 1996.
[11] D. M. Roberge, L. Ducry, N. Bieler, P. Cretton, and B. Zimmermann, "Microreactor technology: a revolution for the fine chemical and pharmaceutical industries?," Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology, vol. 28, no. 3, pp. 318-323, 2005.
[12] B. P. Mason, K. E. Price, J. L. Steinbacher, A. R. Bogdan, and D. T. McQuade, "Greener approaches to organic synthesis using microreactor technology," Chemical reviews, vol. 107, no. 6, pp. 2300-2318, 2007.
[13] B. Ahmed-Omer, J. C. Brandt, and T. Wirth, "Advanced organic synthesis using microreactor technology," Organic & biomolecular chemistry, vol. 5, no. 5, pp. 733-740, 2007.
[14] X. Zhang, S. Stefanick, and F. J. Villani, "Application of microreactor technology in process development," Organic process research & development, vol. 8, no. 3, pp. 455-460, 2004.
[15] J.-P. Montheard, M. Chatzopoulos, and D. Chappard, "2-hydroxyethyl methacrylate (HEMA): chemical properties and applications in biomedical fields," Journal of Macromolecular Science, Part C: Polymer Reviews, vol. 32, no. 1, pp. 1-34, 1992.
[16] M. Save, J. Weaver, S. Armes, and P. McKenna, "Atom transfer radical polymerization of hydroxy-functional methacrylates at ambient temperature: comparison of glycerol monomethacrylate with 2-hydroxypropyl methacrylate," Macromolecules, vol. 35, no. 4, pp. 1152-1159, 2002.
[17] H. Zou and S. P. Armes, "Efficient synthesis of poly (2-hydroxypropyl methacrylate)-silica colloidal nanocomposite particles via aqueous dispersion polymerization," Polymer Chemistry, vol. 3, no. 1, pp. 172-181, 2012.
[18] N. Gaddam, S. Xavioir, and T. Goel, "Copolymerization of 2‐hydroxypropyl methacrylate with alkyl acrylate monomers," Journal of Polymer Science: Polymer Chemistry Edition, vol. 15, no. 6, pp. 1473-1478, 1977.
[19] Y. J. Wang, J. M. Liu, C. D. Yuan, J. F. Liu, X. Tan, and T. Y. Cao, "Study of kinetics and mechanisms of dispersion polymerization of 2‐hydroxypropyl methacrylate," Polymer international, vol. 50, no. 3, pp. 326-330, 2001.
[20] H. H. Chu and D. C. Fu, "Preparation of poly (hydroxyethyl methacrylate) and poly (hydroxypropyl methacrylate) latices," Macromolecular rapid communications, vol. 19, no. 2, pp. 107-110, 1998.
[21] 北京智研科信咨询有限公司, "全球與中國市場丙烯酸羥丙酯深度研究報告(2017-2022年)," 2017.
[22] Y. Shingai, M. Ueoka, J. Watanabe, and H. Kubota, "Process for producing hydroxyalkyl (METH) acrylates," EP1029847A1, 2002.
[23] M. Uemura, T. Ishida, Y. Yoneda, T. Kajihara, Y. Shingai, and T. Kawashima, "Production process for hydroxyalkyl (meth) acrylate," EP1371628A3, 2002.
[24] 敖文亮,黄子伟,赵宁,张英泉,苏良科, "一种甲基丙烯酸羟基丙酯的制备工艺," CN102584580B, 2012.
[25] 李俊平,陈海波,张礼昌,崔纯燹,黎源,华卫琦,丁建生,张俊华,成兆坤, "一种(甲基)丙烯酸羟乙酯的制备方法," CN105272851B, 2014.
[26] 朱宣軍, "一种丙烯酸羟基酯连续法清洁生产工艺,"CN104557540A, 2015.
[27] 董研,高大彬, "一步法合成丙烯酸-β-羟乙酯新工艺研究," 沈阳化工, no. 3, pp. 20-21, 1996.
[28] T. Dockner, N. Gerhard, “Preparation of ω-hydroxyesiers of α, β-unsaturated carboxylic acids,” US5914427A, 1999.
[29] A. Misske, F. Fleischhaker,C. Fleckenstein, M. Kaller, U. Stengel, M. Blanchot, R. Nair, "Preparation of c8-c24 alkyl (meth) acrylates," TW201619116A, 2016.
[30] F. Murakami, "Process for producing unsaturated carboxylic acid esters," GB1573071A, 1980.
[31] A. Kobayashi, T. Akima, T. Saito, T. Fujita, "Process for producing methacrylic acid esters," US5072027A, 1991.
[32] A. Benderly, R. Ryan, R. Weyler, "Transesterification process for production of (meth) acrylate ester monomers," US20070287841A1, 2009.
[33] G. Strehlke, W. Franz, G. Osterburg, "Process for the production of higher alkylacrylates and methacrylates," US3887609A, 1975.
[34] 沈国良, 朱天宏, 刘佳鑫, 姚美奇, 詹俊博, 陈远南, "丙烯酸高碳烷基酯的合成与应用研究," 化学世界, no. 4, pp. 201-207,2021.
[35] 顾骏, "高纯丙烯酸羟乙酯的新生产工艺," 上海化工, no. 2, pp. 18-22, 2010.
[36] 高大彬, 袁云程, "丙烯酸-β-羟乙酯的新合成方法,"化学试剂, no. 4, pp. 255-255,1993.
[37] J. J. Brandner, W. Benzinger, U. Schygulla, and K. Schubert., "Microstructure devices for efficient heat transfer," Microgravity Science and Technology, vol. 19, no. 3, pp. 41-43, 2007.
[38] K. Wang, Y. Lu, H. Shao, and G. Luo, "Heat-transfer performance of a Liquid− Liquid microdispersed system," Industrial & engineering chemistry research, vol. 47, no. 23, pp. 9754-9758, 2008.
[39] J. Xu, J. Tan, S. Li, and G. Luo, "Enhancement of mass transfer performance of liquid–liquid system by droplet flow in microchannels," Chemical Engineering Journal, vol. 141, no. 1-3, pp. 242-249, 2008.
[40] M. N. Kashid and L. Kiwi-Minsker, "Microstructured reactors for multiphase reactions: state of the art," Industrial & Engineering Chemistry Research, vol. 48, no. 14, pp. 6465-6485, 2009.
[41] L. Falk and J.-M. Commenge, "Performance comparison of micromixers," Chemical Engineering Science, vol. 65, no. 1, pp. 405-411, 2010.
[42] M. R. Bringer, C. J. Gerdts, H. Song, J. D. Tice, and R. F. Ismagilov, "Microfluidic systems for chemical kinetics that rely on chaotic mixing in droplets," Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 362, no. 1818, pp. 1087-1104, 2004.
[43] S. A. K. Oskooei and D. Sinton, "Partial wetting gas–liquid segmented flow microreactor," Lab on a Chip, vol. 10, no. 13, pp. 1732-1734, 2010.
[44] G. Chen, G. Luo, S. Li, J. Xu, and J. Wang, "Experimental approaches for understanding mixing performance of a minireactor," AIChE journal, vol. 51, no. 11, pp. 2923-2929, 2005.
[45] F. Trachsel, A. Günther, S. Khan, and K. F. Jensen, "Measurement of residence time distribution in microfluidic systems," Chemical Engineering Science, vol. 60, no. 21, pp. 5729-5737, 2005.
[46] J. T. Adeosun and A. Lawal, "Residence-time distribution as a measure of mixing in T-junction and multilaminated/elongational flow micromixers," Chemical Engineering Science, vol. 65, no. 5, pp. 1865-1874, 2010.
[47] T. Schwalbe, V. Autze, M. Hohmann, and W. Stirner, "Novel innovation systems for a cellular approach to continuous process chemistry from discovery to market," Organic process research & development, vol. 8, no. 3, pp. 440-454, 2004.
[48] V. Hessel, C. Hofmann, P. Löb, J. Löhndorf, H. Löwe, and A. Ziogas, "Aqueous Kolbe− Schmitt synthesis using resorcinol in a microreactor laboratory rig under high-p, T conditions," Organic process research & development, vol. 9, no. 4, pp. 479-489, 2005.
[49] J. M. Sauks, D. Mallik, Y. Lawryshyn, T. Bender, and M. Organ, "A continuous-flow microwave reactor for conducting high-temperature and high-pressure chemical reactions," Organic Process Research & Development, vol. 18, no. 11, pp. 1310-1314, 2014.
[50] R. D. Chambers, M. A. Fox, D. Holling, T. Nakano, T. Okazoe, and G. Sandford, "Elemental fluorine Part 16. Versatile thin-film gas–liquid multi-channel microreactors for effective scale-out," Lab on a Chip, vol. 5, no. 2, pp. 191-198, 2005.
[51] T. Gustafsson, R. Gilmour, and P. H. Seeberger, "Fluorination reactions in microreactors," Chemical communications, no. 26, pp. 3022-3024, 2008.
[52] C. Wiles, P. Watts, S. J. Haswell, and E. Pombo-Villar, "The aldol reaction of silyl enol ethers within a micro reactor," Lab on a Chip, vol. 1, no. 2, pp. 100-101, 2001.
[53] G. S. Calabrese and S. Pissavini, "From batch to continuous flow processing in chemicals manufacturing," AIChE journal, vol. 57, no. 4, pp. 828-834, 2011.
[54] L. Ducry and D. M. Roberge, "Controlled autocatalytic nitration of phenol in a microreactor," Angewandte Chemie International Edition, vol. 44, no. 48, pp. 7972-7975, 2005.
[55] J.-i. Yoshida, Y. Takahashi, and A. Nagaki, "Flash chemistry: flow chemistry that cannot be done in batch," Chemical communications, vol. 49, no. 85, pp. 9896-9904, 2013.
[56] 张友全, 童长春, 周国容,"丙烯酸羟丙酯催化合成反应研究," 成都科技大学学报, no. 3, pp. 27-32, 1996.

無法下載圖示 全文公開日期 2032/08/08 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE