簡易檢索 / 詳目顯示

研究生: 馮文彬
Fung Man Ping
論文名稱: 甲基丙烯酸酐改質羥丙基甲基纖維素水凝膠應用於青光眼治療之研究
Development of methacrylic anhydride modified hydroxypropyl methylcellulose hydrogel for glaucoma treatment
指導教授: 鄭詠馨
Yung-Hsin Cheng
口試委員: 白孟宜
Meng-Yi Bai
曾靖孋
Ching-Li Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 85
中文關鍵詞: 青光眼羥丙基甲基纖維素亞硝基穀胱甘肽奈米粒子小樑網狀細胞
外文關鍵詞: glaucoma, hydroxypropyl methylcellulose, s-nitrosoglutathione, nanoparticles, trabecular meshwork cells
相關次數: 點閱:334下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 青光眼 (Glaucoma) 是由一種視神經病變所引發的眼部疾病,眼部壓力過高是主要成因之一,較高的眼壓會造成視神經的受損,進而造成患者視力減弱甚至失明,目前臨床治療多使用局部眼藥水滴點的方式來控制患者眼壓,然而,由於此治療方式生物利用度過低且需要頻繁的給藥,尚有許多限制需要克服。近年來研究顯示含一氧化氮藥物可透過引起小樑網狀組織 (Trabecular meshwork, TM) 的鬆弛,增加常規房水引流來調節眼內壓,還可以調節細胞凋亡及發炎反應,針對氧化壓力的損傷進行治療。羥丙基甲基纖維素 (Hydroxypropyl methylcellulose, HPMC) 是一種具黏彈性及黏膜貼附性的高分子,並且被美國食品藥物管理局核准用於眼科滴劑或口服藥物的非活性成分,它可以通過延長藥物與角膜的接觸時間,顯著改善眼部病變的治療。本研究發展一藥物載體,預期能設計出長效且穩定的青光眼給藥系統。在研究中以聚乳酸-甘醇酸 (Poly (Lactide-co-Glycolide), PLGA) 製備出奈米粒子 (Nanoparticles, NPs) 並包覆亞硝基穀胱甘肽 (S-nitrosoglutathione, GSNO) ,再搭配以甲基丙烯酸酐 (Methacrylic anhydride, MA) 改質後具黏膜貼附特性的羥丙基甲基纖維素水凝膠,期望能延長藥物於眼表停留的時間並降低給藥頻率,以達到更好的治療效果。 除了進一步評估奈米粒子的形態、粒徑、粒徑分布及界達電位 (Zeta potential),也進行過氧化氫清除能力、藥物釋放實驗等研究。水凝膠方面則利用傅立葉轉換紅外光譜與核磁共振光譜分析材料改質前後的特徵峰及化學結構變化,並進行流變性質測試及體外生物相容性實驗。

    實驗結果顯示改質後的HPMC具有良好的生物相容性,流變測試也顯示改質後的水膠有更好的黏膜貼附特性。在載藥濃度的選擇上,從細胞存活率的結果顯示, GSNO奈米粒子 (GSNO-NPs) 對TM細胞的安全濃度約為80 μM。將 GSNO-NPs以不同濃度分別與TM細胞進行共培養,發現低濃度的GSNO-NPs具有促進TM細胞增殖特性。


    Glaucoma is a kind of eye disease caused by optic neuropathy. Elevated intraocular pressure (IOP) is one of the main causes, which can cause damage to the optic nerve, and can lead to impaired vision and even blindness in patients. At present, topical eye drops are the most common way to control the IOP of patients. However, there are still many limitations that need to be overcome due to the low bioavailability of the drug and the need for frequent administration. Recent studies have shown that drugs containing nitric oxide can increase conventional aqueous humor drainage to regulate intraocular pressure by relaxing trabecular meshwork (TM). It can also regulate cell apoptosis and inflammation, and target oxidative stress-induced damage.

    Hydroxypropyl methylcellulose (HPMC) is a viscoelastic polymer and is approved by the US Food and Drug Administration as an inactive ingredient for ophthalmic drops or oral medications. It possesses mucoadhesive ability which significantly improves the treatment of eye diseases by prolonging the contact time between the drug and the cornea.

    This research develops a drug carrier, which is expected to provide a sustainable and stable drug delivery system for glaucoma. Poly (Lactide-co-Glycolide) (PLGA) was used to prepare nanoparticles (NPs) loaded with S-nitrosoglutathione (GSNO),and mixed with HPMC modified by methacrylic anhydride (MA) which has shown improved mucoadhesion characteristics, to prolong the retention of the drug on the ocular surface and reduce the frequency of administration to achieve better treatment effect. In addition, we evaluated the morphology, particle size, particle size distribution and zeta potential of the nanoparticles. Hydrogen peroxide scavenging activity and in vitro drug release were also tested. Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy were used to analyze the characteristic peaks and chemical structure of the modified hydrogels, rheology and biocompatibility test of materials were also carried out.

    The experiment results show that the modified HPMC hydrogels have good biocompatibility and better mucoadhesion characteristics. The cell viability test shows that the safety concentration of GSNO-loaded NPs (GSNO-NPs) for TM cells is about 80 μM. GSNO-NPs were co-cultured with TM cells at different concentrations, and it was found that low-concentration GSNO-NPs promotes the proliferation of TM cells.

    中文摘要 Abstract 誌謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 研究背景 1.2 動機與目的 第二章 文獻回顧 2.1 眼睛結構 2.2 青光眼 2.2.1 青光眼的致病機轉 2.2.2 青光眼的治療方法 2.3 眼部藥物輸送途徑 2.4 活性氧類與氧化壓力 2.5 一氧化氮 2.6 羥丙基甲基纖維素 (Hydroxypropyl Methylcellulose, HPMC) 2.7 聚乳酸-甘醇酸 (Poly (Lactide-co-Glycolide), PLGA) 2.8 甲基丙烯酸酯化高分子 第三章 材料與方法 3.1 實驗材料與藥品 3.2 實驗儀器 3.3 實驗流程 3.4 細胞培養 3.4.1 SIRC 3.4.2 TM 3.5 黏膜貼附水凝膠製備 3.5.1 甲基丙烯酸酯化羥丙基甲基纖維素的合成 3.5.2 傅立葉轉換紅外線光譜測定 3.5.3 核磁共振光譜測定 3.5.4 生物相容性測試 3.5.5 表面觀察 3.5.6 流變性質測試 3.6 GSNO的製備 3.6.1 GSNO 抗氧化能力 3.7 奈米粒子的製備 3.7.1 粒徑、多分散指數和Zeta電位 3.7.2 形態觀察 3.7.3 GSNO-NPs 藥物濃度測定 3.7.4 藥物安全濃度測試 3.8 水凝膠搭載奈米粒子體外藥物釋放研究 3.9 統計分析方法 第四章 結果與討論 4.1 黏膜貼附水凝膠製備 4.1.1 傅立葉轉換紅外線光譜測定 4.1.2 核磁共振光譜測定 4.1.3 生物相容性測試 4.1.4 表面觀察 4.1.5 流變性質測試 4.2 GSNO抗氧化能力 4.3 奈米粒子的製備 4.3.1 粒徑、多分散指數和Zeta電位 4.3.2 形態觀察 4.3.3 GSNO-NPs藥物濃度測定 4.3.4 藥物安全濃度測試 4.4 水凝膠搭載奈米粒子體外藥物釋放研究 第五章 結論 第六章 參考文獻

    [1] R.N. Weinreb, C.K. Leung, J.G. Crowston, F.A. Medeiros, D.S. Friedman, J.L. Wiggs, K.R. Martin, Primary open-angle glaucoma, Nat Rev Dis Primers 2 (2016) 16067.
    [2] Y. Weng, J. Liu, S. Jin, W. Guo, X. Liang, Z. Hu, Nanotechnology-based strategies for treatment of ocular disease, Acta Pharm Sin B 7(3) (2017) 281-291.
    [3] L. Cwiklik, Tear film lipid layer: A molecular level view, Biochim Biophys Acta 1858(10) (2016) 2421-2430.
    [4] R. Gaudana, H.K. Ananthula, A. Parenky, A.K. Mitra, Ocular drug delivery, AAPS J 12(3) (2010) 348-60.
    [5] V. Andres-Guerrero, J. Garcia-Feijoo, A.G. Konstas, Targeting Schlemm's Canal in the Medical Therapy of Glaucoma: Current and Future Considerations, Adv Ther 34(5) (2017) 1049-1069.
    [6] P.W. Morrison, V.V. Khutoryanskiy, Advances in ophthalmic drug delivery, Ther Deliv 5(12) (2014) 1297-315.
    [7] J.D. Dunn, P.M. Karpecki, M.E. Meske, D. Reissman, Evolving knowledge of the unmet needs in dry eye disease, Am J Manag Care 27(2 Suppl) (2021) S23-S32.
    [8] C.E. Willoughby, D. Ponzin, S. Ferrari, A. Lobo, K. Landau, Y. Omidi, Anatomy and physiology of the human eye: effects of mucopolysaccharidoses disease on structure and function - a review, Clinical & Experimental Ophthalmology 38 (2010) 2-11.
    [9] J.-Y. Lai, L.-J. Luo, D.D. Nguyen, Multifunctional glutathione-dependent hydrogel eye drops with enhanced drug bioavailability for glaucoma therapy, Chemical Engineering Journal 402 (2020).
    [10] Y. Fan, H. Tu, H. Zhao, F. Wei, Y. Yang, T. Ren, A wearable contact lens sensor for noninvasive in-situ monitoring of intraocular pressure, Nanotechnology 32(9) (2021) 095106.
    [11] L.T.Y. Ho, A. Osterwald, I. Ruf, D. Hunziker, P. Mattei, P. Challa, R. Vann, C. Ullmer, P.V. Rao, Role of the autotaxin-lysophosphatidic acid axis in glaucoma, aqueous humor drainage and fibrogenic activity, Biochim Biophys Acta Mol Basis Dis 1866(1) (2020) 165560.
    [12] A. Izzotti, A. Bagnis, S.C. Sacca, The role of oxidative stress in glaucoma, Mutat Res 612(2) (2006) 105-14.
    [13] Y. Ruan, S. Jiang, A. Musayeva, A. Gericke, Oxidative Stress and Vascular Dysfunction in the Retina: Therapeutic Strategies, Antioxidants (Basel) 9(8) (2020).
    [14] P.L. Kaufman, Deconstructing aqueous humor outflow - The last 50 years, Exp Eye Res 197 (2020) 108105.
    [15] S. Esteban-Perez, V. Andres-Guerrero, J.J. Lopez-Cano, I. Molina-Martinez, R. Herrero-Vanrell, I. Bravo-Osuna, Gelatin Nanoparticles-HPMC Hybrid System for Effective Ocular Topical Administration of Antihypertensive Agents, Pharmaceutics 12(4) (2020).
    [16] J. Lusthaus, I. Goldberg, Current management of glaucoma, Med J Aust 210(4) (2019) 180-187.
    [17] I.P. Kaur, R. Smitha, Penetration enhancers and ocular bioadhesives: two new avenues for ophthalmic drug delivery, Drug Dev Ind Pharm 28(4) (2002) 353-69.
    [18] D. Ghate, H.F. Edelhauser, Ocular drug delivery, Expert Opin Drug Deliv 3(2) (2006) 275-87.
    [19] S. Wadhwa, R. Paliwal, S.R. Paliwal, S.P. Vyas, Nanocarriers in ocular drug delivery: an update review, Curr Pharm Des 15(23) (2009) 2724-50.
    [20] A. Bochot, E. Fattal, Liposomes for intravitreal drug delivery: a state of the art, J Control Release 161(2) (2012) 628-34.
    [21] M. Dubald, S. Bourgeois, V. Andrieu, H. Fessi, Ophthalmic Drug Delivery Systems for Antibiotherapy-A Review, Pharmaceutics 10(1) (2018).
    [22] U. Forstermann, N. Xia, H. Li, Roles of Vascular Oxidative Stress and Nitric Oxide in the Pathogenesis of Atherosclerosis, Circ Res 120(4) (2017) 713-735.
    [23] L. Diebold, N.S. Chandel, Mitochondrial ROS regulation of proliferating cells, Free Radic Biol Med 100 (2016) 86-93.
    [24] P.D. Ray, B.W. Huang, Y. Tsuji, Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling, Cell Signal 24(5) (2012) 981-90.
    [25] G. Pizzino, N. Irrera, M. Cucinotta, G. Pallio, F. Mannino, V. Arcoraci, F. Squadrito, D. Altavilla, A. Bitto, Oxidative Stress: Harms and Benefits for Human Health, Oxid Med Cell Longev 2017 (2017) 8416763.
    [26] A. Izzotti, S.C. Sacca, M. Longobardi, C. Cartiglia, Sensitivity of ocular anterior chamber tissues to oxidative damage and its relevance to the pathogenesis of glaucoma, Invest Ophthalmol Vis Sci 50(11) (2009) 5251-8.
    [27] D.A. Clopton, P. Saltman, Low-level oxidative stress causes cell-cycle specific arrest in cultured cells, Biochem Biophys Res Commun 210(1) (1995) 189-96.
    [28] A. Izzotti, M. Longobardi, C. Cartiglia, S.C. Sacca, Mitochondrial damage in the trabecular meshwork occurs only in primary open-angle glaucoma and in pseudoexfoliative glaucoma, PLoS One 6(1) (2011) e14567.
    [29] B.T. Gabelt, P.L. Kaufman, Changes in aqueous humor dynamics with age and glaucoma, Prog Retin Eye Res 24(5) (2005) 612-37.
    [30] R. Perez-Garmendia, A. Lopez de Eguileta Rodriguez, I. Ramos-Martinez, N.M. Zuniga, R. Gonzalez-Salinas, H. Quiroz-Mercado, E. Zenteno, E.R. Hernandez, L.F. Hernandez-Zimbron, Interplay between Oxidative Stress, Inflammation, and Amyloidosis in the Anterior Segment of the Eye; Its Pathological Implications, Oxid Med Cell Longev 2020 (2020) 6286105.
    [31] J. Hu, S. Liu, Modulating intracellular oxidative stress via engineered nanotherapeutics, J Control Release 319 (2020) 333-343.
    [32] D. Yoo, K. Guk, H. Kim, G. Khang, D. Wu, D. Lee, Antioxidant polymeric nanoparticles as novel therapeutics for airway inflammatory diseases, Int J Pharm 450(1-2) (2013) 87-94.
    [33] V. Pittala, A. Fidilio, F. Lazzara, C.B.M. Platania, L. Salerno, R. Foresti, F. Drago, C. Bucolo, Effects of Novel Nitric Oxide-Releasing Molecules against Oxidative Stress on Retinal Pigmented Epithelial Cells, Oxid Med Cell Longev 2017 (2017) 1420892.
    [34] R.M. Palmer, A.G. Ferrige, S. Moncada, Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor, Nature 327(6122) (1987) 524-6.
    [35] A.J.S. Wizemann, V. Wizemann, Organic Nitrate Therapy in Glaucoma, American Journal of Ophthalmology 90(1) (1980) 106-109.
    [36] H. Kotikoski, P. Alajuuma, E. Moilanen, P. Salmenpera, O. Oksala, P. Laippala, H. Vapaatalo, Comparison of nitric oxide donors in lowering intraocular pressure in rabbits: role of cyclic GMP, J Ocul Pharmacol Ther 18(1) (2002) 11-23.
    [37] S.A. Wiederholt M, Lepple-Wienhues A, Relaxation of trabecular meshwork and ciliary muscle by release of nitric oxide, Invest Ophthalmol Vis Sci 35(5) (1994) 2515-2520.
    [38] D.Z. Ellis, W.M. Dismuke, B.M. Chokshi, Characterization of soluble guanylate cyclase in NO-induced increases in aqueous humor outflow facility and in the trabecular meshwork, Invest Ophthalmol Vis Sci 50(4) (2009) 1808-13.
    [39] H. Jeong, S. Park, K. Park, M. Kim, J. Hong, Sustained Nitric Oxide-Providing Small Molecule and Precise Release Behavior Study for Glaucoma Treatment, Mol Pharm 17(2) (2020) 656-665.
    [40] D. Ronchetti, F. Impagnatiello, M. Guzzetta, L. Gasparini, M. Borgatti, R. Gambari, E. Ongini, Modulation of iNOS expression by a nitric oxide-releasing derivative of the natural antioxidant ferulic acid in activated RAW 264.7 macrophages, Eur J Pharmacol 532(1-2) (2006) 162-9.
    [41] M.E. Cavet, J.L. Vittitow, F. Impagnatiello, E. Ongini, E. Bastia, Nitric oxide (NO): an emerging target for the treatment of glaucoma, Invest Ophthalmol Vis Sci 55(8) (2014) 5005-15.
    [42] H. Jeong, D. Choi, J. Tanum, Y. Oh, K. Park, J. Hong, Nanocrystals Continuously Releasing Nitric Oxide: Promoting Cell Migration and Increasing Cell Survival against Oxidative Stress, Chemistry of Materials 32(22) (2020) 9787-9797.
    [43] S. Kumar, R.K. Singh, T.R. Bhardwaj, Therapeutic role of nitric oxide as emerging molecule, Biomed Pharmacother 85 (2017) 182-201.
    [44] S.P. Hlaing, J. Kim, J. Lee, N. Hasan, J. Cao, M. Naeem, E.H. Lee, J.H. Shin, Y. Jung, B.L. Lee, B.H. Jhun, J.W. Yoo, S-Nitrosoglutathione loaded poly(lactic-co-glycolic acid) microparticles for prolonged nitric oxide release and enhanced healing of methicillin-resistant Staphylococcus aureus-infected wounds, Eur J Pharm Biopharm 132 (2018) 94-102.
    [45] C. Hu, J. Sun, Y. Zhang, J. Chen, Y. Lei, X. Sun, Y. Deng, Local Delivery and Sustained-Release of Nitric Oxide Donor Loaded in Mesoporous Silica Particles for Efficient Treatment of Primary Open-Angle Glaucoma, Adv Healthc Mater 7(23) (2018) e1801047.
    [46] T. Yang, A.N. Zelikin, R. Chandrawati, Progress and Promise of Nitric Oxide-Releasing Platforms, Adv. Sci. 5(6) (2018) 20.
    [47] J. Lee, D. Kwak, H. Kim, J. Kim, S.P. Hlaing, N. Hasan, J. Cao, J.W. Yoo, Nitric Oxide-Releasing S-Nitrosoglutathione-Conjugated Poly(Lactic-Co-Glycolic Acid) Nanoparticles for the Treatment of MRSA-Infected Cutaneous Wounds, Pharmaceutics 12(7) (2020).
    [48] M.L. Circu, T.Y. Aw, Glutathione and modulation of cell apoptosis, Biochim Biophys Acta 1823(10) (2012) 1767-77.
    [49] R. Franco, J.A. Cidlowski, Apoptosis and glutathione: beyond an antioxidant, Cell Death Differ 16(10) (2009) 1303-14.
    [50] J. Song, S.M. Kang, W.T. Lee, K.A. Park, K.M. Lee, J.E. Lee, Glutathione protects brain endothelial cells from hydrogen peroxide-induced oxidative stress by increasing nrf2 expression, Exp Neurobiol 23(1) (2014) 93-103.
    [51] A.E. Clausen, C.E. Kast, A. Bernkop-Schnurch, The role of glutathione in the permeation enhancing effect of thiolated polymers, Pharm Res 19(5) (2002) 602-8.
    [52] A. Bernkop-Schnurch, D. Guggi, Y. Pinter, Thiolated chitosans: development and in vitro evaluation of a mucoadhesive, permeation enhancing oral drug delivery system, J Control Release 94(1) (2004) 177-86.
    [53] A. Bernkop-Schnurch, C.E. Kast, D. Guggi, Permeation enhancing polymers in oral delivery of hydrophilic macromolecules: thiomer/GSH systems, J Control Release 93(2) (2003) 95-103.
    [54] C.R. Lynch, P.P.D. Kondiah, Y.E. Choonara, L.C. du Toit, N. Ally, V. Pillay, Hydrogel Biomaterials for Application in Ocular Drug Delivery, Front Bioeng Biotechnol 8 (2020) 228.
    [55] S. Li, S. Dong, W. Xu, S. Tu, L. Yan, C. Zhao, J. Ding, X. Chen, Antibacterial Hydrogels, Adv Sci (Weinh) 5(5) (2018) 1700527.
    [56] N. Dubashynskaya, D. Poshina, S. Raik, A. Urtti, Y.A. Skorik, Polysaccharides in Ocular Drug Delivery, Pharmaceutics 12(1) (2019).
    [57] M. Patchan, J.L. Graham, Z. Xia, J.P. Maranchi, R. McCally, O. Schein, J.H. Elisseeff, M.M. Trexler, Synthesis and properties of regenerated cellulose-based hydrogels with high strength and transparency for potential use as an ocular bandage, Mater Sci Eng C Mater Biol Appl 33(5) (2013) 3069-76.
    [58] C. Chang, L. Zhang, Cellulose-based hydrogels: Present status and application prospects, Carbohydr. Polym. 84(1) (2011) 40-53.
    [59] D. Lin, L. Lei, S. Shi, X. Li, Stimulus-Responsive Hydrogel for Ophthalmic Drug Delivery, Macromol Biosci 19(6) (2019) e1900001.
    [60] R. Arevalo-Perez, C. Maderuelo, J.M. Lanao, Recent advances in colon drug delivery systems, J Control Release 327 (2020) 703-724.
    [61] D.E. Ciolacu, R. Nicu, F. Ciolacu, Cellulose-Based Hydrogels as Sustained Drug-Delivery Systems, Materials (Basel) 13(22) (2020).
    [62] L.L. Tundisi, G.B. Mostaco, P.C. Carricondo, D.F.S. Petri, Hydroxypropyl methylcellulose: Physicochemical properties and ocular drug delivery formulations, Eur J Pharm Sci 159 (2021) 105736.
    [63] S. Wei, J.X. Ma, L. Xu, X.S. Gu, X.L. Ma, Biodegradable materials for bone defect repair, Mil Med Res 7(1) (2020) 54.
    [64] P. Ranganathan, C.-W. Chen, S.-P. Rwei, Y.-H. Lee, S.K. Ramaraj, Methods of synthesis, characterization and biomedical applications of biodegradable poly(ester amide)s- A review, Polymer Degradation and Stability 181 (2020).
    [65] S.E. Birk, A. Boisen, L.H. Nielsen, Polymeric nano- and microparticulate drug delivery systems for treatment of biofilms, Adv Drug Deliv Rev 174 (2021) 30-52.
    [66] Y.H. Cheng, Y.C. Ko, Y.F. Chang, S.H. Huang, C.J.L. Liu, Thermosensitive chitosan-gelatin-based hydrogel containing curcumin-loaded nanoparticles and latanoprost as a dual-drug delivery system for glaucoma treatment, Exp. Eye Res. 179 (2019) 179-187.
    [67] H. He, E. Markoutsa, Y. Zhan, J. Zhang, P. Xu, Mussel-inspired PLGA/polydopamine core-shell nanoparticle for light induced cancer thermochemotherapy, Acta Biomater 59 (2017) 181-191.
    [68] G. Sharma, M. Alle, C. Chakraborty, J.C. Kim, Strategies for transdermal drug delivery against bone disorders: A preclinical and clinical update, J Control Release 336 (2021) 375-395.
    [69] E. Fattal, F. Fay, Nanomedicine-based delivery strategies for nucleic acid gene inhibitors in inflammatory diseases, Adv Drug Deliv Rev 175 (2021) 113809.
    [70] B. Silva, B. Sao Braz, E. Delgado, L. Goncalves, Colloidal nanosystems with mucoadhesive properties designed for ocular topical delivery, Int J Pharm 606 (2021) 120873.
    [71] M. Alkholief, H. Albasit, A. Alhowyan, S. Alshehri, M. Raish, M. Abul Kalam, A. Alshamsan, Employing a PLGA-TPGS based nanoparticle to improve the ocular delivery of Acyclovir, Saudi Pharm J 27(2) (2019) 293-302.
    [72] A.B. Nair, N. Sreeharsha, B.E. Al-Dhubiab, J.G. Hiremath, P. Shinu, M. Attimarad, K.N. Venugopala, M. Mutahar, HPMC- and PLGA-Based Nanoparticles for the Mucoadhesive Delivery of Sitagliptin: Optimization and In Vivo Evaluation in Rats, Materials (Basel) 12(24) (2019).
    [73] A.D. Permana, R.N. Utami, P. Layadi, A. Himawan, N. Juniarti, Q.K. Anjani, E. Utomo, S.A. Mardikasari, A. Arjuna, R.F. Donnelly, Thermosensitive and mucoadhesive in situ ocular gel for effective local delivery and antifungal activity of itraconazole nanocrystal in the treatment of fungal keratitis, Int J Pharm 602 (2021) 120623.
    [74] P. Kraisit, S. Limmatvapirat, J. Nunthanid, P. Sriamornsak, M. Luangtana-Anan, Preparation and Characterization of Hydroxypropyl Methylcellulose/Polycarbophil Mucoadhesive Blend Films Using a Mixture Design Approach, Chem Pharm Bull (Tokyo) 65(3) (2017) 284-294.
    [75] O.M. Kolawole, W.M. Lau, V.V. Khutoryanskiy, Methacrylated chitosan as a polymer with enhanced mucoadhesive properties for transmucosal drug delivery, Int J Pharm 550(1-2) (2018) 123-129.
    [76] L.E. Agibayeva, D.B. Kaldybekov, N.N. Porfiryeva, V.R. Garipova, R.A. Mangazbayeva, R.I. Moustafine, Semina, II, G.A. Mun, S.E. Kudaibergenov, V.V. Khutoryanskiy, Gellan gum and its methacrylated derivatives as in situ gelling mucoadhesive formulations of pilocarpine: In vitro and in vivo studies, Int J Pharm 577 (2020) 119093.
    [77] G.T. Gold, D.M. Varma, D. Harbottle, M.S. Gupta, S.S. Stalling, P.J. Taub, S.B. Nicoll, Injectable redox-polymerized methylcellulose hydrogels as potential soft tissue filler materials, J Biomed Mater Res A 102(12) (2014) 4536-44.
    [78] H. Liu, Y.-L. Hsieh, Surface methacrylation and graft copolymerization of ultrafine cellulose fibers, Journal of Polymer Science Part B: Polymer Physics 41(9) (2003) 953-964.
    [79] Y. Hori, Secreted Mucins on the Ocular Surface, Invest Ophthalmol Vis Sci 59(14) (2018) DES151-DES156.
    [80] R.R. Hodges, D.A. Dartt, Tear film mucins: front line defenders of the ocular surface; comparison with airway and gastrointestinal tract mucins, Exp Eye Res 117 (2013) 62-78.
    [81] V. Guyonnet Duperat, J.P. Audie, V. Debailleul, A. Laine, M.P. Buisine, S. Galiegue-Zouitina, P. Pigny, P. Degand, J.P. Aubert, N. Porchet, Characterization of the human mucin gene MUC5AC: a consensus cysteine-rich domain for 11p15 mucin genes?, Biochem J 305 ( Pt 1) (1995) 211-9.
    [82] J. Su, Thiol-Mediated Chemoselective Strategies for In Situ Formation of Hydrogels, Gels 4(3) (2018).
    [83] B.D. Mather, K. Viswanathan, K.M. Miller, T.E. Long, Michael addition reactions in macromolecular design for emerging technologies, Progress in Polymer Science 31(5) (2006) 487-531.
    [84] S.-H. Kim, C.-C. Chu, Synthesis and characterization of dextran-methacrylate hydrogels and structural study by SEM, Journal of Biomedical Materials Research 49(4) (2000) 517-527.
    [85] H. Chen, R. Li, J. Xie, X. Xu, S. Chen, Facile methacrylation of cellulose via alkaline aqueous esterification for thiol–ene click functionalization, Materials Letters 245 (2019) 18-21.
    [86] M. Dewan, B. Bhowmick, G. Sarkar, D. Rana, M.K. Bain, M. Bhowmik, D. Chattopadhyay, Effect of methyl cellulose on gelation behavior and drug release from poloxamer based ophthalmic formulations, Int J Biol Macromol 72 (2015) 706-10.
    [87] E.E. Hassan, J.M. Gallo, A simple rheological method for the in vitro assessment of mucin-polymer bioadhesive bond strength, Pharm Res 7(5) (1990) 491-5.
    [88] V.M. de Oliveira Cardoso, M.P.D. Gremiao, B.S.F. Cury, Mucin-polysaccharide interactions: A rheological approach to evaluate the effect of pH on the mucoadhesive properties, Int J Biol Macromol 149 (2020) 234-245.
    [89] A.C. Melvin, W.M. Jones, A. Lutzke, C.L. Allison, M.M. Reynolds, S-Nitrosoglutathione exhibits greater stability than S-nitroso-N-acetylpenicillamine under common laboratory conditions: A comparative stability study, Nitric Oxide 92 (2019) 18-25.
    [90] D. Mukhopadhyay, P. Dasgupta, D. Sinha Roy, S. Palchoudhuri, I. Chatterjee, S. Ali, S. Ghosh Dastidar, A Sensitive In vitro Spectrophotometric Hydrogen Peroxide Scavenging Assay using 1,10-Phenanthroline, Free Radicals and Antioxidants 6(1) (2016) 124-132.
    [91] E. Marsano, L. De Paz, E. Tambuscio, E. Bianchi, Cellulose methacrylate: synthesis and liquid crystalline behaviour of solutions and gels, Polymer 39(18) (1998) 4289-4294.
    [92] A. Qi, S.P. Hoo, J. Friend, L. Yeo, Z. Yue, P.P. Chan, Hydroxypropyl cellulose methacrylate as a photo-patternable and biodegradable hybrid paper substrate for cell culture and other bioapplications, Adv Healthc Mater 3(4) (2014) 543-54.
    [93] M.L. Lee, Y. Li, Y.P. Feng, C.W. Carter, Study of frequency dependence modulus of bulk amorphous alloys around the glass transition by dynamic mechanical analysis, Intermetallics 10(11-12) (2002) 1061-1064.
    [94] A. Fini, V. Bergamante, G.C. Ceschel, Mucoadhesive gels designed for the controlled release of chlorhexidine in the oral cavity, Pharmaceutics 3(4) (2011) 665-79.
    [95] J.F. Alopaeus, M. Hellfritzsch, T. Gutowski, R. Scherliess, A. Almeida, B. Sarmento, N. Skalko-Basnet, I. Tho, Mucoadhesive buccal films based on a graft co-polymer - A mucin-retentive hydrogel scaffold, Eur J Pharm Sci 142 (2020) 105142.
    [96] C. He, Y. Hu, L. Yin, C. Tang, C. Yin, Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles, Biomaterials 31(13) (2010) 3657-66.
    [97] C. Napoli, G. Paolisso, A. Casamassimi, M. Al-Omran, M. Barbieri, L. Sommese, T. Infante, L.J. Ignarro, Effects of nitric oxide on cell proliferation: novel insights, J Am Coll Cardiol 62(2) (2013) 89-95.

    無法下載圖示 全文公開日期 2026/09/13 (校內網路)
    全文公開日期 2026/09/13 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE