簡易檢索 / 詳目顯示

研究生: 鄒秉桓
Ping-Huan Chou
論文名稱: 運用合成之四氧化三鐵高速捕捉人類高密度脂蛋白於臨床檢測統計分析
Rapid Capturing HDL of Synthesized Fe3O4@APTES@ProteinG in Clinical Trail and Statistics Analysis
指導教授: 陳建光
Jem-Kun Chen
口試委員: 林豐彥
陳建光
黃群耀
黃啟賢
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 138
中文關鍵詞: 人類高密度脂蛋白鐵磁分離DHR螢光檢測法統計分析四氧化三鐵奈米粒子
外文關鍵詞: HDL (high density lipoprotein), Protein G, Magnetic seperation, DHR fluorescent detection, Statistics linear regression, Fe3O4 nanoparticle
相關次數: 點閱:171下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗分為兩個部份,第一部分以共沈澱法合成出粒徑約為20~30 nm之四氧化三鐵粒子 (Iron oxide nanoparticles, Fe3O4,FeNPs) 。接著將FeNP改質後,加入Protein G連接,接著透過Protein G與IgG抗體的生物親和性結合後,使抗體能與抗原反應,續與帶有螢光標籤的二抗反應後,以雷射共軛焦顯微鏡觀察確認反應之成功性。
    第二部分為了進一步對HDL的分離做統計分析,透過定量之BSA檢量線來推論出磁珠之穩定抓取濃度,並與傳統的高速離心法比較,找出最適合應用於臨床HDL分離之奈米磁珠實驗參數。
    對此,本研究尋求一個能取代舊有的純化HDL的方式,藉由磁珠分離具有快速且能夠檢驗大量樣本檢體之特性,冀期能在未來做出可快速篩檢的檢測HDL功能的檢測工具。


    The thesis consists of two parts, including synthesizing Fe3O4 @APTES@ProteinG-Ig nanoparticles, measurement of HDL oxidative fluorescence units by detecting emmison wavelength of DHR. First, iron oxide nanoparticles (FeNPs) with a mean diameter 25nm is prepared by co-precipitation method, then modifying on FeNPs’ surface to synthesize FeNPs. Next, by coating Protein G on FeNP@APTES nanoparticles’ surface, we have succefully synthesized FeNP@APTES@Protein G-Ig structure by protein G bio-affinity.
    Second, the composite particles were characterized with different HDL concentration, including specificity capturing HDL observed by CLSM, capturing amount deduced by applying UV method, and linear regression with tratitional ultracentrifugation and DCFH flurescent detection method etc.
    This study aims to provide a new novel method to substitute for ultracentrifugation method which takes 6 days to separate pure HDL from serum. Magnetic beads have known for its rapid separation ability with good bio-compatibility. We find highly potential of magnetic beads in large clinical trail of HDL quality examination.

    致謝 IV 1.1 研究背景 1 1.2 研究動機與目的 4 第2章 理論與文獻回顧 7 2.1 人類高密度脂蛋白之螢光氧化試劑法檢驗 7 2.2 HDL 分離法 11 2.3超順磁性四氧化三鐵奈米粒子 14 2.3.1磁性材料特性 15 2.1.1 共沉澱法(Co-precipitation) 21 2.1.2 微乳化法(Micro-emulsions) 21 2.1.3 水熱法(Solvothermal reaction) 21 2.4表面分子固定法 22 2.5 抗體(Antibody) 24 第3章 儀器原理 27 3.1 高解析度場發射掃描式電子顯微鏡(Field-emission scanning electron microscope,FE-SEM) 27 3.2 場發射穿透式電子顯微鏡(Field-emission transmission electron microscope,FE-TEM) 28 3.3 X光繞射分析儀(X-ray diffractometer,XRD) 32 3.4 傅立葉轉換紅外線光譜儀(Fourier transform infrared spectrometer,FT-IR) 35 3.5 熱重量分析儀(Thermogravimetric analysis,TGA) 40 3.6 動態光散射粒徑分析儀(Dynamic light scattering,DLS) 42 3.7 表面電位分析儀(Zeta-potential) 43 3.8 超導量子干涉磁量儀(Superconducting quantum interference device magnetometer,SQUID) 45 3.9 雷射掃描式共軛焦顯微鏡 (Laser scanning confocal microscope,LSCM) 49 第4章 實驗流程與方法 51 4.1 實驗流程圖 51 4.2 實驗藥品 52 4.3 實驗儀器 54 4.4 實驗步驟 56 4.4.1 四氧化三鐵奈米粒子(FeNPs)的製備 56 4.4.2 四氧化三鐵奈米粒子磁感應之穿透率變化量測 57 4.4.3 四氧化三鐵奈米粒子的胺基修飾 57 4.4.4 胺基修飾四氧化三鐵奈米粒子的製備 57 4.4.5 FeNP@APTES@Protein G 核殼奈米粒子的製備 58 4.4.6 PBS緩衝溶液製備 58 4.4.7 Protein G與磁奈米粒子結合 59 4.4.8 Protein G濃度定量 60 4.4.9 FeNP@APTES@G 核殼奈米粒子之抗體修飾 60 4.4.10 FeNP@APTES@G 抗體修飾反應 61 第5章 結果與討論 62 5.1 SEM表面型態分析 62 5.1.1 FeNP 影像分析 62 5.1.2 FeNP@APTES 影像分析 63 5.1.3 FeNP@APTES@Protein G影像分析 65 5.2 TEM穿透型態分析 68 5.3 FeNP@APTES@ProteinG核-殼奈米粒子綜合定性分析 74 5.3.1 超順磁四氧化三鐵定性分析 74 5.3.2 FT-IR 定性分析 75 5.3.3 XRD結晶分析 76 5.3.4 DLS 粒徑分析 77 5.3.5 Zeta 表面電位分析 78 5.3.6 SQUID 磁性分析 79 5.3.7 FeNP@APTES FT-IR定性分析 80 5.3.8 FeNP@APTES Zeta 表面電位分析 82 5.3.9 FeNP@APTES@Protein G XPS 定性分析 83 5.3.10 FeNP@APTES@Protein G DLS 粒徑分析 87 5.3.11 FeNP@APTES@ProteinG Zeta 表面電位分析 89 5.4 UV-vis光譜 91 5.5 FeNP@APTES@Protein G-Ig-HDL 抗體專一性檢驗 95 5.5.1 CLSM螢光檢驗 95 5.5.2 FeNP@APTES@Protein G@HDL 抗氧化螢光能力檢驗 96 5.5.3 FeNP@APTES@Protein G-Ig 抓取率測試 98 5.6 FeNP@APTES@Protein G-Ig-HDL臨床小樣本之DHR抗氧化能力檢驗 100 第6章 第六章 結論 107 參考文獻 109

    參考文獻
    [1].Mohamad Navab, Susan Y. Hama, Greg P. Hough, Ganesamoorthy Subbanagounder, Srinivasa T. Reddy, and Alan M. Fogelman, “A cell-free assay for detecting HDL that is dysfunctional in preventing the formation of or inactivating oxidized phospholipids” Journal of Lipid Research, 2001, Volume 42,1308-1317

    [2]. Anouar Hafiane, Jacques Genest, “High density lipoproteins: Measurement techniques and potential biomarkers of cardiovascular risk ” BBA Clinical , 2015, 3, 175–188

    [3].Xuan Gao,Shujun Yuan,“High density lipoproteins-based therapies for cardiovascular disease”. J Cardiovasc Dis Res. 2010 Jul-Sep; 1(3): 99–103.

    [4].Theodoros Kelesidis, Judith S. Currier, Diana Huynh, David Meriwether, Christina Charles-Schoeman, Srinivasa T. Reddy, Alan M. Fogelman, Mohamad Navab, and Otto O. Yang, “A biochemical fluorometric method for assessing the oxidative properties of HDL” Journal of Lipid Research Volume 52, 2011,2341-2351

    [5].Theodoros Kelesidis, Christian K. Roberts, Diana Huynh, Otoniel Martınez-Maza, Judith S. Currier, Srinivasa T. Reddy, Otto O. Yang, “A High Throughput Biochemical Fluorometric Method for Measuring Lipid Peroxidation in HDL”, PLOS ONE, November 2014, Volume 9, Issue 11 |, e111716, 1-17

    [6] Van Roosbroeck R, Van Roy W, Stakenborg T, Trekker J, D'Hollander A, Dresselaers T, et al. “Synthetic antiferromagnetic nanoparticles as potential contrast agents in MRI.” ACS nano, 2014, 8 ,2269-2278.

    [7] Tucek J, Kemp KC, Kim KS, Zboril R. “Iron-oxide-supported nanocarbon in lithium-ion batteries, medical, catalytic, and environmental applications. "ACS nano, 2014,8,7571-7612.

    [8] Donglu Shi, M. E. Sadat, Andrew W. Dunn and David B. Mast, “Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications” Nanoscale, 2015, 7, 8209-8232

    [9] World Health Organization, media centre, fact sheet updated may 2017.
    (http://www.who.int/mediacentre/factsheets/fs317/en/)

    [10] Mohamad Navab, Susan Y. Hama, C. Justin Cooke, G. M. Anantharamaiah, Manjula Chaddha, Linda Jin, Ganesamoorthy Subbanagounder, Kym F. Faull, Srinivasa T. Reddy, Norman E. Miller, and Alan M. Fogelman, “Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: step 1”, Journal of Lipid Research Volume 41, 2000, 1481-1494
     
    [11] Mohamad Navab, S. T. Reddy, B. J. Van Lenten, G. M. Anantharamaiah, A. M. Fogelman, “The role of dysfunctional HDL in atherosclerosis.” J. Lipid Res, 2009, 50, S145 – S149

    [12] Ansell, B. J., M. Navab, S. Hama, N. Kamranpour, G. Fonarow, G. Hough, S. Rahmani, R. Mottahedeh, R. Dave, S. T. Reddy, et al, “Infl ammatory/antiinfl ammatory properties of high-density lipoprotein distinguish patients from control subjects better than high-density lipoprotein cholesterol levels and are favorably affected by simvastatin treatment.:” Circulation, 2003, 108, 2751 – 2756

    [13] Ansell, B. J., G. C. Fonarow, and A. M. Fogelman, “The paradox of dysfunctional high-density lipoprotein.” Curr. Opin. Lipidol, 2007, 18, 427 – 434

    [14] Navab, M., G. M. Anantharamaiah, S. T. Reddy, B. J. Van Lenten, and A. M. Fogelman, “HDL as a biomarker, potential therapeutic target, and therapy.” Diabetes. 2009. 58, 2711 – 2717

    [15] Patel S, Drew BG, Nakhla S, Duffy SJ, Murphy AJ, et al. “Reconstituted high-density lipoprotein increases plasma high-density lipoprotein anti-inflammatory properties and cholesterol efflux capacity in patients with type 2 diabetes.” J Am Coll Cardiol, 2009, 53, 962–971

    [16]. Undurti A, Huang Y, Lupica JA, Smith JD, DiDonato JA, et al. “Modification of high density lipoprotein by myeloperoxidase generates a proinflammatory particle.” J Biol Chem, 2009, 284, 30825–30835.

    [17]. Van Lenten BJ, Wagner AC, Navab M, Anantharamaiah GM, Hama S, et al. “Lipoprotein inflammatory properties and serum amyloid A levels but not cholesterol levels predict lesion area in cholesterol-fed rabbits.” J Lipid Res, 2007, 48, 2344–2353.
    [18] Watson CE, Weissbach N, Kjems L, Ayalasomayajula S, Zhang Y, et al. “reatment of patients with cardiovascular disease with L-4F, an apo-A1 mimetic, did not improve select biomarkers of HDL function.” J Lipid Res, 2011, 52, 361–373.

    [19] N. Van Landschoot, E. Kelder, J. Schoonman, “Synthesis and characterization of LiCo1−xFexVO4 prepared by a citric acid complex method,” Journal of Solid State Electrochemistry, 2003, 8, 28-33.

    [20] W. Meissner, R. Ochsenfeld, “Ein neuer effekt bei eintritt der supraleitfähigkeit.”, Naturwissenschaften, 1993, 21, 787-788.

    [21] C. Kittel, “Introduction to Solid State Physics, 6th edn.”, Wiley, 1986,

    [22] D.K. Cheng, “Field and wave electromagnetics.”, Addison-Wesley New York, 1989.

    [23] Y. Lai, W. Yin, J. Liu, R. Xi, J. Zhan, “One-pot green synthesis and bioapplication of L-arginine-capped superparamagnetic Fe3O4 nanoparticles.”, Nanoscale research letters, 2010, 5, 302-307.

    [24] X. Wang, C. Zhao, P. Zhao, P. Dou, Y. Ding, P. Xu, “Gellan gel beads containing magnetic nanoparticles: an effective biosorbent for the removal of heavy metals from aqueous system.”, Bioresource technology, 2009, 100, 2301-2304.

    [25] Y. Wang, X. Wang, G. Luo, Y. Dai, “Adsorption of bovin serum albumin (BSA) onto the magnetic chitosan nanoparticles prepared by a microemulsion system.”, Bioresource technology, 2008, 99, 3881-3884.

    [26] S. Xuan, Y.-X.J. Wang, J.C. Yu, K.C.-F. Leung, “Preparation, characterization, and catalytic activity of core/shell Fe3O4@ polyaniline@ Au nanocomposites.”, Langmuir, 2009, 25,11835-11843.

    [27] H. Li, Z. Li, T. Liu, X. Xiao, Z. Peng, L. Deng, “A novel technology for biosorption and recovery hexavalent chromium in wastewater by bio-functional magnetic beads.”, Bioresource technology, 2008, 99, 6271-6279.

    [28] E. Hee Kim, H. Sook Lee, B. Kook Kwak, B.-K. Kim, “Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent.”, Journal of Magnetism and Magnetic Materials, 2005, 289,328-330.

    [29] O. Olsvik, T. Popovic, E. Skjerve, K.S. Cudjoe, E. Hornes, J. Ugelstad, M. Uhlen, “Magnetic separation techniques in diagnostic microbiology.”, Clinical microbiology reviews, 1994, 7, 43-54.

    [30] P. Gupta, C. Hung, F. Lam, D. Perrier, “Synthesis and characterization of microspheres containing adriamycin and magnetite, International journal of pharmaceutics.”, 1988, 43, 167-177.

    [31] T. Neuberger, B. Schöpf, H. Hofmann, M. Hofmann, B. von Rechenberg, “Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system.”, Journal of Magnetism and Magnetic Materials, 2005, 293, 483-496.

    [32] A. Jordan, P. Wust, H. Fähling, W. John, A. Hinz, R. Felix, “Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia, International Journal of Hyperthermia.”, 2009, 25, 499-511.

    [33] U. Häfeli, “Scientific and clinical applications of magnetic carriers.”, Springer, 1997.

    [34] M.N. Widjojoatmodjo, A.C. Fluit, R. Torensma, J. Verhoef, “Comparison of immunomagnetic beads coated with protein A, protein G, or goat anti-mouse immunoglobulins Applications in enzyme immunoassays and immunomagnetic separations.”, Journal of immunological methods, 1993, 165, 11-19.

    [35] Rusmini F., Zhong Z., Feijen J., “Protein immobilization strategies for protein biochips.”, Biomacromolecules, 2007, 8, 1775-89.

    [36] Sehgal D, Vijay IK. “A method for the high efficiency of ater-soluble carbodiimide-mediated amidation.”, Analytical biochemistry, 1994, 218, 87-91.

    [37] Hermanson GT. “Bioconjugate techniques”, Academic press, 2013.

    [38] ThermoScientific. NHS and Sulfo-NHS 2011.

    [39] D. L. Nelson, A. L. L., M. M. Cox, “Lehninger principles of biochemistry.”, WH Freeman, 2008, 869-870.

    [40] A. Dias, A. Hussain, A. Marcos, A. Roque, “A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides.”, Biotechnology advances, 2011, 29, 142-155.

    [41] Waldron, R.D. “Infrared spectra of ferrites.”, Physical Review, 1955, 99, 6, 1727.

    [42] Ma, M., Zhang, Y., Yu, W., Shen, H. Y., Zhang, H. Q., Gu, N. “Preparation and characterization of magnetite nanoparticles coated by amino silane.” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 212, 2, 219-226.

    [43] Wang, L., Ji, H., Wang, S., Kong, L., Jiang, X., Yang, G. “Preparation of Fe3O4 with high specific surface area and improved capacitance as a supercapacitor.”, Nanoscale, 2013, 5, 9, 3793-3799

    [44] White, L. D.; Tripp, C. P. “Reaction of (3-aminopropyl) dimethylethoxysilane with amine catalysts on silica surfaces.”, Journal of Colloid and Interface Science, 2000, 232, 2, 400-407.

    [45] Heiney, P. A., Grüneberg, K., Fang, J., Dulcey, C., Shashidhar, R. “Structure and growth of chromophore-functionalized (3-aminopropyl) triethoxysilane self-assembled on silicon.” Langmuir, 2000, 16, 6, 2651-2657.

    [46] Feng, B., Hong, R. Y., Wang, L. S., Guo, L., Li, H. Z., Ding, J., Wei, D. G, “Synthesis of Fe3O4/APTES/PEG diacid functionalized magnetic nanoparticles for MR imaging.” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 328, 1, 52-59.

    [47] R.S. Rosenson, H.B. Brewer Jr., M.J. Chapman, S. Fazio, M.M. Hussain, A. Kontush, R.M. Krauss, J.D. Otvos, A.T. Remaley, E.J. Schaefer, “HDL measures, particle hetero- geneity, proposed nomenclature, and relation to atherosclerotic cardiovascular events.”, Clin. Chem. 2011, 57, 392–410.

    [48] L. Tian, S. Long, C. Li, Y. Liu, Y. Chen, Z. Zeng, M. Fu, “High-density lipoprotein sub- class and particle size in coronary heart disease patients with or without diabetes.”, Lipids Health Dis, 2012, 11, 54.

    [49] I. Hara, M. Okazaki, “High-performance liquid chromatography of serum lipopro- teins.”, Methods Enzymol, 1986, 129, 57–78.

    無法下載圖示 全文公開日期 2023/08/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE