簡易檢索 / 詳目顯示

研究生: 阮文徽
Van-Huy Nguyen
論文名稱: 以金屬修飾MCM-41進行選擇性光催化丙烯環氧化之研究
Selective Photo-epoxidation of Propylene on Metals Modified MCM-41 Photocatalysts
指導教授: 林昇佃
Shawn D. Lin
吳紀聖
Jeffrey Chi-Sheng Wu
口試委員: 曾堯宣
Yao-Hsuan Tseng
蘇威年
Wei-Nien Su
白曛綾
Hsunling Bai
林欣瑜
Hsin-Yu Lin
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 199
中文關鍵詞: 環氧化反應丙烯氧化光觸媒共進料光照射協同效應
外文關鍵詞: epoxidation, propylene oxide, photocatalyst, co-feeds, light irradiation, synergetic effect
相關次數: 點閱:205下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 據了解,目前合成丙烯氧化物(PO)的製程是不具經濟和環境的效益。因此在許多的替代製程中,利用氧分子做為直接氣相反應丙烯環氧化光觸媒的氧化劑已開始被重視。在本研究中,製備單金屬氧化物觸媒( 釩或鈦 )和雙金屬氧化物觸媒( 鈦分別摻雜釩、鉬、錳、鋅和鋯 )擔載在中孔的MCM-41載體上。藉由ICP-MS、UV-vis、HR-XPS和XANES觀察金屬氧化物的特徵,而由BET、XRD和TEM分析中孔載體的特徵。
    關於光照射的部分,本篇是第一個使用模擬太陽光來驅動光催化丙烯環氧化。利用NLU指數來定義PO的生成和C3H6的消耗速率。結果顯示,使用汞弧燈比氙氣燈有更好的光利用率,但由NLU指數顯示PO的選擇率幾乎沒有改變,表示在不同的光照條件下光環氧化具有相同的反應機制。
    研究共進料物種(水或氫氣)對光環氧化的影響。從結果顯示,當水共進料條件在0.6 KPa時能夠促進C3H6的消耗速率,但無法提升PO的形成速率並且會稍微降低PO的選擇率。當水濃度的增加,過量的水會阻塞表面的活性位置導致反應活性降低。相同的,當氫氣共進料條件在5.6 KPa時能夠提升C3H6的消耗速率和改善C3H6的穩定性。此外,共進料存在能夠改善觸媒的穩定性,可能是乙醛在觸媒表面上堆積,導致表面被汙染發生失活的現象,可以藉由共進料來抑制。另一方面,共進料可以改變光觸媒反應的選擇率。
    其中在光觸媒金屬氧化物中,釩和鈦氧化物表現出優異的光催化活性。此外,高分散釩/鈦氧化物的配位四面體扮演著光催化環氧化的角色。V0.2Ti0.3/MCM-41在0.3 mW cm−2 和 323 K的紫外光照射下,最佳的PO形成速率為634 ± 17 (µmol g−1 h−1)。基於Delplot方法提出間接和直接生成PO的兩個反應途徑,也清楚的說明,釩和鈦金屬氧化物在光催化環氧化途徑中的影響。此外,從釩和鈦金屬氧化物的活性位置在光催化環氧化機制中,可解釋光催化環氧化活性的協同效應。
    雖然獲得大幅提升光催化的效率,但PO的產率還不及工廠生產訂單的要求,因此未來必須進一步開發有效的光催化系統來增加光催化環氧化反應。


    It is known that the current processes to synthesize propylene oxide (PO) may not promote environmental and economic sustainability. Among many alternative processes, the direct gas-phase photocatalytic propylene epoxidation using molecular oxygen as the oxidant has received a considerable attention. In this study, a various single (V or Ti) and binary (Ti combined with V, Mo, Mn, Zn, and Zr, respectively) metal oxide catalysts constructed within the MCM-41 mesoporous framework were prepared. The metal oxide was characterized by ICP-MS, UV-vis, HR-XPS, XANES while mesoporous supported photocatalysts was characterized by BET, N2 adsorption/desorption, XRD, and TEM analyses.
    Regarding the light irradiation, this is a first report of using artificial sunlight to drive the photo-epoxidation of propylene. A normalized light utilization (NLU) index is defined which correlate well with the rate of both PO formation and C3H6 consumption in log-log scale. The results show that light utilization with a mercury arc lamp is better than that with a xenon lamp. The selectivity to PO remains practically unchanged with respect to NLU, suggesting that the photo-epoxidation occurs through the same mechanism under the conditions tested.
    The effects of co-feed species on photo-epoxidation, namely, H2O or H2, are also examined. The results show that a promoting effect on the C3H6 consumption rate is found under 0.6 kPa H2O co-feed when the PO formation rate is not proportionally promoted, resulting a slightly decreased PO selectivity. With increasing H2O concentration, the reaction activity decreases because of surface site blocking by excess H2O. Similarly, the enhanced C3H6 consumption rate and the improved stability are found when 5.6 kPa H2 is used as co-feed. Additionally, the catalyst stability is improved with the presence of co-feed. The possible reason is that the acetaldehyde accumulation at the catalyst surface, which may lead to surface fouling and the observed deactivation, can be depressed by co-feed. On the other hand, co-feed may also impose a shift in the production formation of photocatalytic reaction.
    Among metal oxide photocatalysts, V- and Ti-oxide show an excellent photocatalytic activity. Additionally, the highly V-/Ti-dispersed tetrahedral coordination plays a role in synergetic photo-epoxidation. Maximum PO formation rate was up to 634 ± 17 (µmol g−1 h−1) on V0.2Ti0.3/MCM-41 under UV light irradiation of 0.3 mW cm−2 at 323 K. Two reaction pathways to produce PO, direction and indirection, were proposed based on Delplot method. The impacts of the presence of V and Ti metal-oxides on the photo-epoxidation pathways are also clearly illustrated. Furthermore, a possible photo-epoxidation mechanism via V and Ti metal-oxide active site is proposed to elucidate the synergetic photo-activity of photo-epoxidation.
    Although substantial improvement in photo-efficiency was obtained, the results remain far from the requirements for production PO in industrial scale. Therefore, further research in the development of new effective photocatalyst systems is necessary for enabling this photo-epoxidation in the future.

    Acknowledgements III Abstract I Abstract (Chinese) III Table of Contents V List of Figures VIII List of Tables XVI List of Abbreviations XVIII 1 Preface 1 2 Introduction 3 2.1 Photocatalysis 3 2.2 Propylene oxide 9 2.3 Review the processes for epoxidation of propylene 13 2.3.1 Chlorohydrin process 15 2.3.2 Organic hydroperoxide processes 16 2.3.3 Hydrogen peroxide combination process 17 2.3.4 Other alternative processes 25 2.3.5 Future outlook 30 2.4 Photocatalytic epoxidation of propylene 31 2.4.1 Optimize the experimental conditions for photo-epoxidation 31 2.4.2 Design the photocatalysts and the role of the silica supports 35 2.4.3 Reaction mechanism of photo-epoxidation by propylene 39 2.5 Motivation and objective of this study 44 3 Materials and Experiments 46 3.1 Chemicals, Equipment and Instruments 46 3.1.1 Chemicals, Gases 46 3.1.2 Equipment 47 3.1.3 Instruments analysis 48 3.2 Preparation of Photocatalysts 49 3.3 Characterization of photocatalysts 51 3.3.1 Inductively coupled plasma mass spectrometry (ICP-MS) 51 3.3.2 Accelerated surface area and porosimetry analysis 52 3.3.3 Ultraviolet-visible light spectroscopy (UV-vis) 52 3.3.4 X-ray diffraction (XRD) 53 3.3.5 Transmission electron microscope (TEM) 54 3.3.6 Thermal gravimetric analysis (TGA) 56 3.3.7 High resolution X-ray photoelectron spectroscopy (HR-XPS) 56 3.3.8 X-ray absorption Spectroscopy (XAS) 57 3.4 Experimental setup 58 3.5 Light sources 61 3.5.1 UV-light 61 3.5.2 UV-visible light and artificial sunlight 61 3.6 Product analysis 62 4 Photocatalyst characterizations 64 4.1 M-Ti/MCM-41 (M=Mo, Mn, Zr, Zn and V) photocatalysts 64 4.2 V-Ti/MCM-41 photocatalysts 67 4.2.1 Mesoporous Structure 67 4.2.2 Characteristics of Ti and V species 72 5 Screening photo-epoxidation activity of M-Ti/MCM-41 (M=V, Mo, Mn, Zn and Zr) photocatalysts 82 5.1 Introduction 82 5.2 Results and Discussion 83 5.3 Summary 86 6 Artificial sunlight and ultraviolet light induced photo-epoxidation of propylene over V-Ti/MCM-41 photocatalyst 87 6.1 Introduction 87 6.2 Results and Discussion 89 6.2.1 Artificial sunlight irradiation 90 6.2.2 UV light irradiation 93 6.2.3 Comparison of artificial sunlight and UV light irradiation 96 6.3 Summary 101 7 Influence of co-feeds additive on the photo-epoxidation of propylene over V-Ti/MCM-41 photocatalyst 102 7.1 Introduction 102 7.2 Results and Discussion 105 7.3 Summary 112 8 Synergetic selective propylene photo-epoxidation on V-Ti/MCM-41 photocatalysts 113 8.1 Introduction 113 8.2 Photo-epoxidation of propylene 114 8.2.1 Products Distribution Stability 117 8.2.2 Synergetic enhancement effect on photocatalytic activity 119 8.3 Proposed reaction pathways for V-/Ti-modified MCM-41 121 8.4 Reason for synergetic effect on photo-epoxidation by using V-/Ti-containing MCM-41 photocatalysts 126 8.5 Comparison of photocatalytic epoxidation process and others 129 8.6 Summary 134 9 Summary and Recommendations 135 9.1 Summary 135 9.2 Recommendations 137 References 138 Appendices 153 A.1 Calibration curves 153 A.2 Experimental systems 158 A.3 Catalyst characterizations 159 Author's Biography 166

    [1] S.T. Oyama, Rates, Kinetics, and Mechanisms of Epoxidation: Homogeneous, Heterogeneous, and Biological Routes, in: S.T. Oyama (Ed.), Mechanisms in Homogeneous and Heterogeneous Epoxidation Catalysis, Elsevier, Amsterdam, 2008, pp. 3-99.
    [2] H. Baer, M. Bergamo, A. Forlin, L.H. Pottenger, J. Lindner, Propylene Oxide, Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, 2000.
    [3] T.A. Nijhuis, M. Makkee, J.A. Moulijn, B.M. Weckhuysen, The Production of Propene Oxide:  Catalytic Processes and Recent Developments, Industrial & Engineering Chemistry Research 45 (2006) 3447-3459.
    [4] C.P. Horwitz, Oxidation Catalysts for Green Chemistry, in: P.T. Anastas, J.B. Zimmerman (Eds.), Innovations in Green Chemistry and Green Engineering, Springer New York, 2013, pp. 247-295.
    [5] R.W. Missen, C.A. Mims, B.A. Saville, Introduction to chemical reaction engineering and kinetics, J. Wiley, New York, 1999.
    [6] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemannt, Environmental Applications of Semiconductor Photocatalysis, Chemical reviews 95 (1995) 69-96.
    [7] A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results, Chemical Reviews 95 (1995) 735-758.
    [8] Y. Nosaka, M.A. Fox, Kinetics for Electron Transfer from Laser-Pulse-Irradiated Colloidal Semiconductors to Adsorbed Methylviologen, The Journal of Physical Chemistry 88 (1988) 1893-1897.
    [9] Y. Zhu, L. Zhang, W. Yao, L. Cao, The chemical states and properties of doped TiO2 film photocatalyst prepared using the Sol-Gel method with TiCl4 as a precursor, Applied Surface Science 158 (2000) 32-37.
    [10] H.H. Mohamed, D.W. Bahnemann, The role of electron transfer in photocatalysis: Fact and fictions, Applied Catalysis B: Environmental 128 (2012) 91-104.
    [11] Y. Tamaki, A. Furube, M. Murai, K. Hara, R. Katoh, M. Tachiya, Dynamics of efficient electron-hole separation in TiO2 nanoparticles revealed by femtosecond transient absorption spectroscopy under the weak-excitation condition, Physical Chemistry Chemical Physics 9 (2007) 1453-1460.
    [12] A. Fujishima, X. Zhang, D.A. Tryk, TiO2 photocatalysis and related surface phenomena, Surface Science Reports 63 (2008) 515-582.
    [13] T. Yoshihara, R. Katoh, A. Furube, Y. Tamaki, M. Murai, K. Hara, S. Murata, H. Arakawa, M. Tachiya, Identification of Reactive Species in Photoexcited Nanocrystalline TiO2 Films by Wide-Wavelength-Range (400−2500 nm) Transient Absorption Spectroscopy, The Journal of Physical Chemistry B 108 (2004) 3817-3823.
    [14] A.M. Peiró, C. Colombo, G. Doyle, J. Nelson, A. Mills, J.R. Durrant, Photochemical Reduction of Oxygen Adsorbed to Nanocrystalline TiO2 Films:  A Transient Absorption and Oxygen Scavenging Study of Different TiO2 Preparations, The Journal of Physical Chemistry B 110 (2006) 23255-23263.
    [15] Y. Tamaki, A. Furube, M. Murai, K. Hara, R. Katoh, M. Tachiya, Direct Observation of Reactive Trapped Holes in TiO2 Undergoing Photocatalytic Oxidation of Adsorbed Alcohols:  Evaluation of the Reaction Rates and Yields, Journal of the American Chemical Society 128 (2006) 416-417.
    [16] A. Yamakata, T.-a. Ishibashi, H. Onishi, Water- and Oxygen-Induced Decay Kinetics of Photogenerated Electrons in TiO2 and Pt/TiO2:  A Time-Resolved Infrared Absorption Study, The Journal of Physical Chemistry B 105 (2001) 7258-7262.
    [17] M. Murai, Y. Tamaki, A. Furube, K. Hara, R. Katoh, Reaction of holes in nanocrystalline TiO2 films evaluated by highly sensitive transient absorption spectroscopy, Catalysis Today 120 (2007) 214-219.
    [18] K. Iwata, T. Takaya, H.-o. Hamaguchi, A. Yamakata, T.-a. Ishibashi, H. Onishi, H. Kuroda, Carrier Dynamics in TiO2 and Pt/TiO2 Powders Observed by Femtosecond Time-Resolved Near-Infrared Spectroscopy at a Spectral Region of 0.9−1.5 μm with the Direct Absorption Method, The Journal of Physical Chemistry B 108 (2004) 20233-20239.
    [19] M.D. Hernandez-Alonso, F. Fresno, S. Suarez, J.M. Coronado, Development of alternative photocatalysts to TiO2: Challenges and opportunities, Energy & Environmental Science 2 (2009) 1231-1257.
    [20] M. Anpo, J.M. Thomas, Single-site photocatalytic solids for the decomposition of undesirable molecules, Chemical Communications (2006) 3273-3278.
    [21] M. Anpo, T.-H. Kim, M. Matsuoka, The design of Ti-, V-, Cr-oxide single-site catalysts within zeolite frameworks and their photocatalytic reactivity for the decomposition of undesirable molecules—The role of their excited states and reaction mechanisms, Catalysis Today 142 (2009) 114-124.
    [22] S. Suárez, Single-Site Photocatalysts: Photoactive Species Dispersed on Porous Matrixes, in: J.M. Coronado, F. Fresno, M.D. Hernández-Alonso, R. Portela (Eds.), Design of Advanced Photocatalytic Materials for Energy and Environmental Applications, Springer London, 2013, pp. 171-194.
    [23] M. Bohnet, Ullmann's Encyclopedia of Industrial Chemistry, John Wiley & Sons, Inc, 2009.
    [24] H.S.D. Bank, 1,2-Propylene Oxide Profile, National Library of Medicine, 2001.
    [25] ICIS Chemical Business (ICB) Chemical Profile, 2007.
    [26] F. Mirasol, US chemical profile: Propylene oxide, ICIS Chemical Business, 2011.
    [27] P.M. Parker, The World Market for Methyloxirane (Propylene Oxide): A 2013 Global Trade Perspective, San Diego, CA 92126 USA, 2013, pp. 63.
    [28] S.J. Khatib, S.T. Oyama, Direct Oxidation of Propylene to Propylene Oxide with Molecular Oxygen: A Review, Catalysis Reviews (2015) 1-39.
    [29] M.G. Clerici, G. Bellussi, U. Romano, Synthesis of propylene oxide from propylene and hydrogen peroxide catalyzed by titanium silicalite, Journal of Catalysis 129 (1991) 159-167.
    [30] A. Tullo, Dow, BASF to build Propylene Oxide, Chemical & Engineering News, American Chemical Society, 2004, pp. 15.
    [31] J. Lu, X. Zhang, J.J. Bravo-Suárez, K.K. Bando, T. Fujitani, S.T. Oyama, Direct propylene epoxidation over barium-promoted Au/Ti-TUD catalysts with H2 and O2: Effect of Au particle size, Journal of Catalysis 250 (2007) 350-359.
    [32] H. Yoshida, C. Murata, T. Hattori, Screening Study of Silica-Supported Catalysts for Photoepoxidation of Propene by Molecular Oxygen, Journal of Catalysis 194 (2000) 364-372.
    [33] V.-H. Nguyen, H.-Y. Chan, J.C.S. Wu, H. Bai, Direct gas-phase photocatalytic epoxidation of propylene with molecular oxygen by photocatalysts, Chemical Engineering Journal 179 (2012) 285-294.
    [34] C.D. Wagner, G.E. Muilenberg, Handbook of x-ray photoelectron spectroscopy : a reference book of standard data for use in x-ray photoelectron spectroscopy, Perkin-Elmer Corp., Physical Electronics Division, Eden Prairie, Minn, 1979.
    [35] M. Ishino, Development of New Propylene Oxide Process, 16th Saudi Arabia -Japan Joint Symposium Dhahran, Saudi Arabia, 2006.
    [36] G.F. Thiele, E. Roland, Propylene epoxidation with hydrogen peroxide and titanium silicalite catalyst: Activity, deactivation and regeneration of the catalyst, Journal of Molecular Catalysis A: Chemical 117 (1997) 351-356.
    [37] D.M. Perez Ferrandez, M.H.J.M. de Croon, J.C. Schouten, T.A. Nijhuis, Gas-Phase Epoxidation of Propene with Hydrogen Peroxide Vapor, Industrial & Engineering Chemistry Research 52 (2013) 10126-10132.
    [38] T.A. Nijhuis, T. Visser, B.M. Weckhuysen, The Role of Gold in Gold–Titania Epoxidation Catalysts, Angewandte Chemie International Edition 44 (2005) 1115-1118.
    [39] M. Haruta, M. Daté, Advances in the catalysis of Au nanoparticles, Applied Catalysis A: General 222 (2001) 427-437.
    [40] T. Hayashi, K. Tanaka, M. Haruta, Selective Vapor-Phase Epoxidation of Propylene over Au/TiO2 Catalysts in the Presence of Oxygen and Hydrogen, Journal of Catalysis 178 (1998) 566-575.
    [41] B. Taylor, J. Lauterbach, W.N. Delgass, Gas-phase epoxidation of propylene over small gold ensembles on TS-1, Applied Catalysis A: General 291 (2005) 188-198.
    [42] T.A. Nijhuis, T.Q. Gardner, B.M. Weckhuysen, Modeling of kinetics and deactivation in the direct epoxidation of propene over gold–titania catalysts, Journal of Catalysis 236 (2005) 153-163.
    [43] C.-H. Liu, Y. Guan, E.J.M. Hensen, J.-F. Lee, C.-M. Yang, Au/TiO2@SBA-15 nanocomposites as catalysts for direct propylene epoxidation with O2 and H2 mixtures, Journal of Catalysis 282 (2011) 94-102.
    [44] Y. Ren, L. Xu, L. Zhang, J. Wang, Y. Liu, M. He, P. Wu, Selective epoxidation of propylene to propylene oxide with H2 and O2 over Au/Ti-MWW catalysts, Pure and Applied Chemistry, 2011, pp. 561.
    [45] A.K. Sinha, S. Seelan, T. Akita, S. Tsubota, M. Haruta, Vapor phase propylene epoxidation over Au/Ti-MCM-41 catalysts prepared by different Ti incorporation modes, Applied Catalysis A: General 240 (2003) 243-252.
    [46] E. Sacaliuc, A.M. Beale, B.M. Weckhuysen, T.A. Nijhuis, Propene epoxidation over Au/Ti-SBA-15 catalysts, Journal of Catalysis 248 (2007) 235-248.
    [47] F. Goodridge, S. Harrison, R.E. Plimley, The electrochemical production of propylene oxide, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 214 (1986) 283-293.
    [48] J.M. van der Eijk, T.J. Peters, N. de Wit, H.A. Colijn, Electrochemical epoxidation of olefins, Catalysis Today 3 (1988) 259-266.
    [49] C.M. Elliott, J.R. Dunkle, S.C. Paulson, Electrochemical Olefin Epoxidation Employing an Iron(IV)Porphyrin/Trisbipyridineruthenium(III) Polymer Catalyst, Langmuir 21 (2005) 8605-8608.
    [50] E.T. Farinas, M. Alcalde, F. Arnold, Alkene epoxidation catalyzed by cytochrome P450 BM-3 139-3, Tetrahedron 60 (2004) 525-528.
    [51] S.-C. Chua, X. Xu, Z. Guo, Emerging sustainable technology for epoxidation directed toward plant oil-based plasticizers, Process Biochemistry 47 (2012) 1439-1451.
    [52] J. Rouchaud, M. De Pauw, The catalysis of propylene oxidation by silver chelates, Journal of Catalysis 14 (1969) 114-117.
    [53] D.Y. Waddan, D. Williams, Process for the oxidation of olefinic compounds to olefine oxides or derivatives thereof, Google Patents, 1982.
    [54] R.A. Grey, Production of oxirane compounds, Google Patents, 1997.
    [55] B.T. Pennington, Alkylene oxides production using molten nitrate salt catalysts, Google Patents, 1991.
    [56] B.T. Pennington, M.C. Fullington, Molten salt catalyzed oxidation of alkanes or olefins using lower temperture nitrate salts, Google Patents, 1990.
    [57] A. Balepin, A. Bobolev, J. Buslaev, V. Chagin, N. Emanuel, A. Sergeev, Method for preparing propylene oxide, Google Patents, 1974.
    [58] S. Cavitt, Process for oxidizing olefins using hydrocarbon soluble phosphorus modified molybdenum catalysts, Google Patents, 1974.
    [59] T.A. Nijhuis, S. Musch, M. Makkee, J.A. Moulijn, The direct epoxidation of propene by molten salts, Applied Catalysis A: General 196 (2000) 217-224.
    [60] Y. Liu, K. Murata, M. Inaba, Epoxidation of propylene with molecular oxygen in methanol over a peroxo-heteropoly compound immobilized on palladium exchanged HMS, Green Chemistry 6 (2004) 510-515.
    [61] J.R. Monnier, The direct epoxidation of higher olefins using molecular oxygen, Applied Catalysis A: General 221 (2001) 73-91.
    [62] P. Hayden, R.J. Sampson, C.B. Spencer, H. Pinnegar, Promoted silver catalyst for producing alkylene oxides, Google Patents, 1977.
    [63] J. Lu, J.J. Bravo-Suárez, M. Haruta, S.T. Oyama, Direct propylene epoxidation over modified Ag/CaCO3 catalysts, Applied Catalysis A: General 302 (2006) 283-295.
    [64] X. Zheng, Q. Zhang, Y. Guo, W. Zhan, Y. Guo, Y. Wang, G. Lu, Epoxidation of propylene by molecular oxygen over supported Ag–Cu bimetallic catalysts with low Ag loading, Journal of Molecular Catalysis A: Chemical 357 (2012) 106-111.
    [65] G. Jin, G. Lu, Y. Guo, Y. Guo, J. Wang, X. Liu, Direct epoxidation of propylene with molecular oxygen over Ag–MoO3/ZrO2 catalyst, Catalysis Today 93–95 (2004) 173-182.
    [66] W. Yao, G. Lu, Y. Guo, Y. Guo, Y. Wang, Z. Zhang, Promotional effect of Y2O3 on the performance of Ag/α-Al2O3 catalyst for epoxidation of propylene with molecular oxygen, Journal of Molecular Catalysis A: Chemical 276 (2007) 162-167.
    [67] S. Ghosh, S.S. Acharyya, R. Tiwari, B. Sarkar, R.K. Singha, C. Pendem, T. Sasaki, R. Bal, Selective Oxidation of Propylene to Propylene Oxide over Silver-Supported Tungsten Oxide Nanostructure with Molecular Oxygen, ACS Catalysis 4 (2014) 2169-2174.
    [68] O.P.H. Vaughan, G. Kyriakou, N. Macleod, M. Tikhov, R.M. Lambert, Copper as a selective catalyst for the epoxidation of propene, Journal of Catalysis 236 (2005) 401-404.
    [69] R.L. Cropley, F.J. Williams, A.J. Urquhart, O.P.H. Vaughan, M.S. Tikhov, R.M. Lambert, Efficient Epoxidation of a Terminal Alkene Containing Allylic Hydrogen Atoms:  trans-Methylstyrene on Cu{111}, Journal of the American Chemical Society 127 (2005) 6069-6076.
    [70] W. Long, Q. Zhai, J. He, Q. Zhang, W. Deng, Y. Wang, Significant Synergistic Effect between Supported Ruthenium and Copper Oxides for Propylene Epoxidation by Oxygen, ChemPlusChem 77 (2012) 27-30.
    [71] A. Miller, B. Zohour, A. Seubsai, D. Noon, S. Senkan, SnO2–CuO–NaCl/SiO2 Catalysts for Propylene Epoxidation, Industrial & Engineering Chemistry Research 52 (2013) 9551-9555.
    [72] K. Murata, Y. Kiyozumi, Oxidation of propene by molecular oxygen over Ti-modified silicalite catalysts, Chemical Communications (2001) 1356-1357.
    [73] K. Murata, K. Bere, T. Hayakawa, S. Hamakawa, K. Suzuki, K. Matano, Direct Oxidation of Propylene with Molecular Oxygen over Ti-Modified Sulfated Zirconia Catalyst, 1. Characterization of the Catalyst and Catalytic Performances, Reaction Kinetics and Catalysis Letters 72 (2001) 57-63.
    [74] T. Miyaji, P. Wu, T. Tatsumi, Selective oxidation of propylene to propylene oxide over Ti–MCM-41 supporting metal nitrate, Catalysis Today 71 (2001) 169-176.
    [75] K. Murata, Y. Liu, N. Mimura, M. Inaba, Direct vapor phase oxidation of propylene by molecular oxygen over MCM-41 or MCM-22 based catalysts, Catalysis Communications 4 (2003) 385-391.
    [76] Y. Liu, K. Murata, M. Inaba, N. Mimura, Selective Oxidation of Propylene to Propylene Oxide by Molecular Oxygen over Ti-Al-HMS Catalysts, Catalysis Letters 89 (2003) 49-53.
    [77] J. Vernimmen, V. Meynen, P. Cool, Synthesis and catalytic applications of combined zeolitic/mesoporous materials, Beilstein Journal of Nanotechnology 2 (2011) 785-801.
    [78] V.-H. Nguyen, H.-Y. Chan, J. Wu, Synthesis, characterization and photo-epoxidation performance of Au-loaded photocatalysts, Journal of Chemical Sciences (2013) 1-9.
    [79] C. Murata, H. Yoshida, J. Kumagai, T. Hattori, Active Sites and Active Oxygen Species for Photocatalytic Epoxidation of Propene by Molecular Oxygen over TiO2−SiO2 Binary Oxides, The Journal of Physical Chemistry B 107 (2003) 4364-4373.
    [80] F. Amano, T. Yamaguchi, T. Tanaka, Photocatalytic Oxidation of Propylene with Molecular Oxygen over Highly Dispersed Titanium, Vanadium, and Chromium Oxides on Silica, The Journal of Physical Chemistry B 110 (2005) 281-288.
    [81] H. Yoshida, C. Murata, T. Hattori, Photocatalytic epoxidation of propene by molecular oxygen over highly dispersed titanium oxide species on silica, Chemical Communications (1999) 1551–1552.
    [82] H. Yoshida, T. Tanaka, M. Yamamoto, T. Funabiki, S. Yoshida, Photooxidation of propene by O2 over silica and Mg-loaded silica, Chemical Communications (1996) 2125-2126.
    [83] F. Amano, T. Tanaka, Modification of photocatalytic center for photo-epoxidation of propylene by rubidium ion addition to V2O5/SiO2, Catalysis Communications 6 (2005) 269-273.
    [84] V.-H. Nguyen, J.C.S. Wu, H. Bai, Temperature effect on the photo-epoxidation of propylene over V–Ti/MCM-41 photocatalyst, Catalysis Communications 33 (2013) 57-60.
    [85] S. Murcia-López, V. Vaiano, D. Sannino, M.C. Hidalgo, J.A. Navío, Photocatalytic propylene epoxidation on Bi2WO6-based photocatalysts, Res Chem Intermed (2014) 1-14.
    [86] J. Wong, F.W. Lytle, R.P. Messmer, D.H. Maylotte, K-edge absorption spectra of selected vanadium compounds, Physical Review B 30 (1984) 5596-5610.
    [87] V.-H. Nguyen, H.-Y. Chan, J.C.S. Wu, H. Bai, Photo-epoxidation of Propylene to Propylene Oxide over V-Ti/MCM-41: A Wavelength Effect on Photocatalytic Activities, in: Chi-Hwa Wang, Xin Wang, P. Linga (Eds.) 14th Asia Pacific Confederation of Chemical Engineering Congress Singapore, 2012.
    [88] V.-H. Nguyen, S.D. Lin, J.C.-S. Wu, H. Bai, Artificial sunlight and ultraviolet light induced photo-epoxidation of propylene over V-Ti/MCM-41 photocatalyst, Beilstein Journal of Nanotechnology 5 (2014) 566-576.
    [89] H. Yoshida, T. Tanaka, M. Yamamoto, T. Yoshida, T. Funabiki, S. Yoshida, Epoxidation of Propene by Gaseous Oxygen over Silica and Mg-Loaded Silica under Photoirradiation, Journal of Catalysis 171 (1997) 351-357.
    [90] H. Yamashita, K. Kida, K. Ikeue, Y. Kanazawa, K. Yoshizawa, M. Anpo, Photocatalytic epoxidation of propene with molecular oxygen under visible light irradiation on V ion-implanted Ti-HMS and Cr-HMS mesoporous molecular sieves, in: R.R.W.-S.A.C.W.L. Sang-Eon Park, C. Jong-San (Eds.), Studies in Surface Science and Catalysis, Elsevier, 2003, pp. 597-600.
    [91] F. Amano, T. Tanaka, T. Funabiki, Steady-State Photocatalytic Epoxidation of Propene by O2 over V2O5/SiO2 Photocatalysts, Langmuir 20 (2004) 4236-4240.
    [92] R. Molinari, P. Argurio, C. Lavorato, Review On Reduction And Partial Oxidation of Organics In Photocatalytic (Membrane) Reactors, Current Organic Chemistry 17 (2013) 2516-2537.
    [93] M.A. Fox, M.T. Dulay, Heterogeneous photocatalysis, Chemical Reviews 93 (1993) 341-357.
    [94] P. Pichat, J.M. Herrmann, J. Disdier, M.N. Mozzanega, Photocatalytic oxidation of propene over various oxides at 320 K. Selectivity, The Journal of Physical Chemistry 83 (1979) 3122-3126.
    [95] H.J. Zhan, Q.H. Xia, X.H. Lu, Q. Zhang, H.X. Yuan, K.X. Su, X.T. Ma, Selective epoxidation of styrene with air catalyzed by CoOx and CoOx/SiO2 without any reductant, Catalysis Communications 8 (2007) 1472-1478.
    [96] X. Fu, L.A. Clark, W.A. Zeltner, M.A. Anderson, Effects of reaction temperature and water vapor content on the heterogeneous photocatalytic oxidation of ethylene, Journal of Photochemistry and Photobiology A: Chemistry 97 (1996) 181-186.
    [97] T. Hirakawa, J.K. Whitesell, M.A. Fox, Effect of Temperature and Pressure in the Photocatalytic Oxidation of n-Octanol on Partially Desilanized Hydrophobic TiO2 Suspended in Aerated Supercritical CO2, The Journal of Physical Chemistry B 108 (2004) 10213-10218.
    [98] S. Yoshida, Y. Magatani, S. Noda, T. Funabiki, Partial oxidation of propene over U.V.-irradiated vanadium oxide supported on silica, Journal of the Chemical Society, Chemical Communications (1981) 601-602.
    [99] S. Yoshida, T. Tanaka, M. Okada, T. Funabiki, Mechanism of photo-oxidation of propene over vanadium oxide supported on silica, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 80 (1984) 119-128.
    [100] T. Tanaka, H. Nojima, H. Yoshida, H. Nakagawa, T. Funabiki, S. Yoshida, Preparation of highly dispersed niobium oxide on silica by equilibrium adsorption method, Catalysis Today 16 (1993) 297-307.
    [101] C. Murata, H. Yoshida, T. Hattori, Visible light-induced photoepoxidation of propene by molecular oxygen over chromia-silica catalysts, Chemical Communications (2001) 2412-2413.
    [102] H. Yoshida, Active sites of silica-based quantum photocatalysts for non-oxidative reactions, Catal Surv Asia 9 (2005) 1-9.
    [103] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature 359 (1992) 710-712.
    [104] D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores, Science 279 (1998) 548-552.
    [105] S. Inagaki, Y. Fukushima, K. Kuroda, Synthesis of highly ordered mesoporous materials from a layered polysilicate, Journal of the Chemical Society, Chemical Communications (1993) 680-682.
    [106] T. Ishikawa, M. Matsuda, A. Yasukawa, K. Kandori, S. Inagaki, T. Fukushima, S. Kondo, Surface silanol groups of mesoporous silica FSM-16, Journal of the Chemical Society, Faraday Transactions 92 (1996) 1985-1989.
    [107] J.C. Jansen, Z. Shan, L. Marchese, W. Zhou, N.v.d. Puil, T. Maschmeyer, A new templating method for three-dimensional mesopore networks, Chemical Communications (2001) 713-714.
    [108] F. Hoffmann, M. Cornelius, J. Morell, M. Fröba, Silica-Based Mesoporous Organic–Inorganic Hybrid Materials, Angewandte Chemie International Edition 45 (2006) 3216-3251.
    [109] M. Grün, K.K. Unger, A. Matsumoto, K. Tsutsumi, Novel pathways for the preparation of mesoporous MCM-41 materials: control of porosity and morphology, Microporous and Mesoporous Materials 27 (1999) 207-216.
    [110] M. Guisnet, N.S. Gnep, S. Morin, J. Patarin, F. Loggia, V. Solinas, Shape selectivity of mesoporous aluminosilicates in the transformation of benzenic hydrocarbons, in: F.B.C.D.S.G. L. Bonneviot, S. Kaliaguine (Eds.), Studies in Surface Science and Catalysis, Elsevier, 1998, pp. 591-598.
    [111] S. Morin, P. Ayrault, S. El Mouahid, N.S. Gnep, M. Guisnet, Particular selectivity of m-xylene isomerization over MCM-41 mesoporous aluminosilicates, Applied Catalysis A: General 159 (1997) 317-331.
    [112] C. Constantin, V. Pârvulescu, A. Bujor, G. Popescu, B.L. Su, Mesoporous nickelsilicate membranes on porous alumina supports: I. Effect of nature and surface pretreatment of alumina supports on the catalytic membrane formation, Journal of Molecular Catalysis A: Chemical 208 (2004) 245-252.
    [113] V. Pârvulescu, C. Constantin, G. Popescu, B.L. Su, Mesoporous nickelsilicate membranes on porous alumina supports: II. Catalytic reactor for oxidation of aromatic hydrocarbons, Journal of Molecular Catalysis A: Chemical 208 (2004) 253-256.
    [114] Q. Zhang, Y. Wang, Y. Ohishi, T. Shishido, K. Takehira, Vanadium-Containing MCM-41 for Partial Oxidation of Lower Alkanes, Journal of Catalysis 202 (2001) 308-318.
    [115] S.S. Bhoware, A.P. Singh, Characterization and catalytic activity of cobalt containing MCM-41 prepared by direct hydrothermal, grafting and immobilization methods, Journal of Molecular Catalysis A: Chemical 266 (2007) 118-130.
    [116] E.A. Carter, W.A. Goddard, The surface atomic oxyradical mechanism for Ag-catalyzed olefin epoxidation, Journal of Catalysis 112 (1988) 80-92.
    [117] C. Hung, H. Bai, M. Karthik, Ordered mesoporous silica particles and Si-MCM-41 for the adsorption of acetone: A comparative study, Separation and Purification Technology 64 (2009) 265-272.
    [118] H.E. Taylor, Inductively Coupled Plasmas, in: H.E. Taylor (Ed.), Inductively Coupled Plasma-Mass Spectrometry, Academic Press, San Diego, 2001, pp. 15-27.
    [119] D. Williams, C.B. Carter, The Transmission Electron Microscope, Transmission Electron Microscopy, Springer US, 1996, pp. 3-17.
    [120] Scanning Beam Methods, Electron Microscopy, Wiley-VCH Verlag GmbH, 2007, pp. 305-497.
    [121] B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT, Journal of Synchrotron Radiation 12 (2005) 537-541.
    [122] S.L. Manatt, M.R.R. Manatt, On the Analyses of Mixture Vapor Pressure Data: The Hydrogen Peroxide/Water System and Its Excess Thermodynamic Functions, Chemistry - A European Journal 10 (2004) 6540-6557.
    [123] Douglas A. Skoog, F. James Holler, S.R. Crouch, Principles of Instrumental Analysis, Sixth ed., David Harris, Belmont, CA, USA, 2009.
    [124] S.C. Laha, R. Kumar, Promoter-induced synthesis of MCM-41 type mesoporous materials including Ti- and V-MCM-41 and their catalytic properties in oxidation reactions, Microporous and Mesoporous Materials 53 (2002) 163-177.
    [125] E.P. Reddy, L. Davydov, P.G. Smirniotis, Characterization of Titania Loaded V-, Fe-, and Cr-Incorporated MCM-41 by XRD, TPR, UV−vis, Raman, and XPS Techniques, The Journal of Physical Chemistry B 106 (2002) 3394-3401.
    [126] A. Corma, M.T. Navarro, J.P. Pariente, Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons, Journal of the Chemical Society, Chemical Communications (1994) 147-148.
    [127] V. Parvulescu, C. Anastasescu, C. Constantin, B.L. Su, Mono (V, Nb) or bimetallic (V–Ti, Nb–Ti) ions modified MCM-41 catalysts: synthesis, characterization and catalysis in oxidation of hydrocarbons (aromatics and alcohols), Catalysis Today 78 (2003) 477-485.
    [128] S. Shylesh, A.P. Singh, Vanadium-containing ordered mesoporous silicates: Does the silica source really affect the catalytic activity, structural stability, and nature of vanadium sites in V-MCM-41?, Journal of Catalysis 233 (2005) 359-371.
    [129] S. Lim, G.L. Haller, Preparation of Highly Ordered Vanadium-Substituted MCM-41:  Stability and Acidic Properties, The Journal of Physical Chemistry B 106 (2002) 8437-8448.
    [130] K.J. Chao, C.N. Wu, H. Chang, L.J. Lee, S.-f. Hu, Incorporation of Vanadium in Mesoporous MCM-41 and Microporous AFI Zeolites, The Journal of Physical Chemistry B 101 (1997) 6341-6349.
    [131] J. Kornatowski, B. Wichterlova, J. Jirkovsky, E. Loffler, W. Pilz, Spectroscopic studies of vanadium-substituted zeolitic silicates of MFI topology, Journal of the Chemical Society, Faraday Transactions 92 (1996) 1067-1078.
    [132] S. Dzwigaj, M. Matsuoka, M. Anpo, M. Che, Evidence of Three Kinds of Tetrahedral Vanadium (V) Species in VSiβ Zeolite by Diffuse Reflectance UV−Visible and Photoluminescence Spectroscopies†, The Journal of Physical Chemistry B 104 (2000) 6012-6020.
    [133] W.A. Carvalho, P.B. Varaldo, M. Wallau, U. Schuchardt, Mesoporous redox molecular sieves analogous to MCM-41, Zeolites 18 (1997) 408-416.
    [134] M.L. Peña, A. Dejoz, V. Fornés, F. Rey, M.I. Vázquez, J.M. López Nieto, V-containing MCM-41 and MCM-48 catalysts for the selective oxidation of propane in gas phase, Applied Catalysis A: General 209 (2001) 155-164.
    [135] T. Sen, V. Ramaswamy, S. Ganapathy, P.R. Rajamohanan, S. Sivasanker, Incorporation of Vanadium in Zeolite Lattices:  Studies of the MEL (ZSM-11) System, The Journal of Physical Chemistry 100 (1996) 3809-3817.
    [136] M. Morey, A. Davidson, H. Eckert, G. Stucky, Pseudotetrahedral O3/2V=O Centers Immobilized on the Walls of a Mesoporous, Cubic MCM-48 Support:  Preparation, Characterization, and Reactivity toward Water As Investigated by 51V NMR and UV−Vis Spectroscopies, Chemistry of Materials 8 (1996) 486-492.
    [137] R. Peng, D. Zhao, N.M. Dimitrijevic, T. Rajh, R.T. Koodali, Room Temperature Synthesis of Ti–MCM-48 and Ti–MCM-41 Mesoporous Materials and Their Performance on Photocatalytic Splitting of Water, The Journal of Physical Chemistry C 116 (2011) 1605-1613.
    [138] L. Marchese, T. Maschmeyer, E. Gianotti, S. Coluccia, J.M. Thomas, Probing the Titanium Sites in Ti−MCM-41 by Diffuse Reflectance and Photoluminescence UV−Vis Spectroscopies, The Journal of Physical Chemistry B 101 (1997) 8836-8838.
    [139] J. Wang, J. Lu, J. Yang, R. Chen, Y. Zhang, D. Yin, J. Wang, Ti containing mesoporous silica submicrometer-sphere, with tunable particle size for styrene oxidation, Applied Surface Science 283 (2013) 794-801.
    [140] F. Geobaldo, S. Bordiga, A. Zecchina, E. Giamello, G. Leofanti, G. Petrini, DRS UV-Vis and EPR spectroscopy of hydroperoxo and superoxo complexes in titanium silicalite, Catalysis Letters 16 (1992) 109-115.
    [141] J.S. Choi, D.J. Kim, S.H. Chang, W.S. Ahn, Catalytic applications of MCM-41 with different pore sizes in selected liquid phase reactions, Applied Catalysis A: General 254 (2003) 225-237.
    [142] R. Castillo, B. Koch, P. Ruiz, B. Delmon, Influence of the Amount of Titania on the Texture and Structure of Titania Supported on Silica, Journal of Catalysis 161 (1996) 524-529.
    [143] D.T. On, L. Bonneviot, A. Bittar, A. Sayari, S. Kaliaguine, Titanium sites in titanium silicalites: An XPS, XANES and EXAFS study, Journal of Molecular Catalysis 74 (1992) 233-246.
    [144] G. Du, S. Lim, M. Pinault, C. Wang, F. Fang, L. Pfefferle, G.L. Haller, Synthesis, characterization, and catalytic performance of highly dispersed vanadium grafted SBA-15 catalyst, Journal of Catalysis 253 (2008) 74-90.
    [145] J.M. Thomas, G. Sankar, The Role of Synchrotron-Based Studies in the Elucidation and Design of Active Sites in Titanium−Silica Epoxidation Catalysts, Accounts of Chemical Research 34 (2001) 571-581.
    [146] K.E. Lee, M.A. Gomez, T. Regier, Y. Hu, G.P. Demopoulos, Further Understanding of the Electronic Interactions between N719 Sensitizer and Anatase TiO2 Films: A Combined X-ray Absorption and X-ray Photoelectron Spectroscopic Study, The Journal of Physical Chemistry C 115 (2011) 5692-5707.
    [147] M. Hävecker, M. Cavalleri, R. Herbert, R. Follath, A. Knop-Gericke, C. Hess, K. Hermann, R. Schlögl, Methodology for the structural characterisation of VxOy species supported on silica under reaction conditions by means of in situ O K-edge X-ray absorption spectroscopy, Physica Status Solidi (b) 246 (2009) 1459-1469.
    [148] F.M.F. de Groot, M. Grioni, J.C. Fuggle, J. Ghijsen, G.A. Sawatzky, H. Petersen, Oxygen 1s X-ray absorption edges of transition-metal oxides, Physical Review B 40 (1989) 5715-5723.
    [149] S. Luo, J.L. Falconer, Acetone and Acetaldehyde Oligomerization on TiO2 Surfaces, Journal of Catalysis 185 (1999) 393-407.
    [150] K. Nakata, A. Fujishima, TiO2 photocatalysis: Design and applications, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 13 (2012) 169-189.
    [151] L. Yang, Z. Liu, Study on light intensity in the process of photocatalytic degradation of indoor gaseous formaldehyde for saving energy, Energy Conversion and Management 48 (2007) 882-889.
    [152] M.A. Behnajady, N. Modirshahla, R. Hamzavi, Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst, Journal of Hazardous Materials 133 (2006) 226-232.
    [153] S. Sakthivel, B. Neppolian, M.V. Shankar, B. Arabindoo, M. Palanichamy, V. Murugesan, Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2, Solar Energy Materials and Solar Cells 77 (2003) 65-82.
    [154] A. Akyol, H.C. Yatmaz, M. Bayramoglu, Photocatalytic decolorization of Remazol Red RR in aqueous ZnO suspensions, Applied Catalysis B: Environmental 54 (2004) 19-24.
    [155] W. Choi, S.J. Hong, Y.-S. Chang, Y. Cho, Photocatalytic Degradation of Polychlorinated Dibenzo-p-dioxins on TiO2 Film under UV or Solar Light Irradiation, Environmental Science & Technology 34 (2000) 4810-4815.
    [156] A.G. Rincón, C. Pulgarin, Photocatalytical inactivation of E. coli: effect of (continuous–intermittent) light intensity and of (suspended–fixed) TiO2 concentration, Applied Catalysis B: Environmental 44 (2003) 263-284.
    [157] M. Cho, H. Chung, W. Choi, J. Yoon, Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection, Water Research 38 (2004) 1069-1077.
    [158] P.S.M. Dunlop, J.A. Byrne, N. Manga, B.R. Eggins, The photocatalytic removal of bacterial pollutants from drinking water, Journal of Photochemistry and Photobiology A: Chemistry 148 (2002) 355-363.
    [159] F. Chen, X. Yang, Q. Wu, Photocatalytic Oxidation of Escherischia coli, Aspergillus niger, and Formaldehyde under Different Ultraviolet Irradiation Conditions, Environmental Science & Technology 43 (2009) 4606-4611.
    [160] K. Koci, K. Zatloukalova, L. Obalova, S. Krejcikova, Z. Lacny, L. Capek, A. Hospodkova, O. Solcova, Wavelength Effect on Photocatalytic Reduction of CO2 by Ag/TiO2 Catalyst, Chinese Journal of Catalysis 32 (2011) 812-815.
    [161] U. Stafford, K.A. Gray, P.V. Kamat, Photocatalytic Degradation of 4-Chlorophenol: The Effects of Varying TiO2 Concentration and Light Wavelength, Journal of Catalysis 167 (1997) 25-32.
    [162] J. Tang, Z. Zou, J. Ye, Efficient Photocatalytic Decomposition of Organic Contaminants over CaBi2O4 under Visible-Light Irradiation, Angewandte Chemie International Edition 43 (2004) 4463-4466.
    [163] S.A. Hauser, M. Cokoja, F.E. Kuhn, Epoxidation of olefins with homogeneous catalysts - quo vadis?, Catalysis Science & Technology 3 (2013) 552-561.
    [164] R.S. Thakur, R. Chaudhary, C. Singh, Fundamentals and applications of the photocatalytic treatment for the removal of industrial organic pollutants and effects of operational parameters: A review, Journal of Renewable and Sustainable Energy 2 (2010) 042701-042737.
    [165] H. Al-Ekabi, N. Serpone, Mechanistic implications in surface photochemistry, in: Nick Serpone, E. Pelizzetti (Eds.), Photocatalysis: Fundamentals and Applications, Wiley, New York, 1989, pp. 457-488.
    [166] B. Wendl, H. Droschl, W. Kern, A comparative study of polymerization lamps to determine the degree of cure of composites using infrared spectroscopy, European Journal of Orthodontics 26 (2004) 545-551.
    [167] M. Takeuchi, J. Deguchi, S. Sakai, M. Anpo, Effect of H2O vapor addition on the photocatalytic oxidation of ethanol, acetaldehyde and acetic acid in the gas phase on TiO2 semiconductor powders, Applied Catalysis B: Environmental 96 (2010) 218-223.
    [168] C. Airoldi, L.N.H. Arakaki, Two Independent Routes to Synthesize Identical Silicas by Grafting Ethylenimine or 2-Aminoethanethiol, Their Cation Adsorbing Abilities, and Thermodynamic Data, Journal of Colloid and Interface Science 249 (2002) 1-7.
    [169] H. Yoshida, Photocatalytic Organic Syntheses, in: M. Anpo, P.V. Kamat (Eds.), Environmentally Benign Photocatalysts, Springer New York, 2010, pp. 647-669.
    [170] J.M. Coronado, M.E. Zorn, I. Tejedor-Tejedor, M.A. Anderson, Photocatalytic oxidation of ketones in the gas phase over TiO2 thin films: a kinetic study on the influence of water vapor, Applied Catalysis B: Environmental 43 (2003) 329-344.
    [171] M. Anpo, K. Chiba, M. Tomonari, S. Coluccia, M. Che, M.A. Fox, Photocatalysis on Native and Platinum-Loaded TiO2 and ZnO Catalysts - Origin of Different Reactivities on Wet and Dry Metal Oxides, Bulletin of the chemical sociery of Japan 64 (1991) 543-551.
    [172] J. Peral, D.F. Ollis, Heterogeneous photocatalytic oxidation of gas-phase organics for air purification: Acetone, 1-butanol, butyraldehyde, formaldehyde, and m-xylene oxidation, Journal of Catalysis 136 (1992) 554-565.
    [173] D.S. Muggli, J.L. Falconer, Parallel Pathways for Photocatalytic Decomposition of Acetic Acid on TiO2, Journal of Catalysis 187 (1999) 230-237.
    [174] H. Huang, D.Y.C. Leung, G. Li, M.K.H. Leung, X. Fu, Photocatalytic destruction of air pollutants with vacuum ultraviolet (VUV) irradiation, Catalysis Today 175 (2011) 310-315.
    [175] J.T. Carneiro, C.-C. Yang, J.A. Moulijn, G. Mul, The effect of water on the performance of TiO2 in photocatalytic selective alkane oxidation, Journal of Catalysis 277 (2011) 129-133.
    [176] I. Izumi, W.W. Dunn, K.O. Wilbourn, F.-R.F. Fan, A.J. Bard, Heterogeneous photocatalytic oxidation of hydrocarbons on platinized titanium dioxide powders, The Journal of Physical Chemistry 84 (1980) 3207-3210.
    [177] M.L. Sauer, D.F. Ollis, Acetone Oxidation in a Photocatalytic Monolith Reactor, Journal of Catalysis 149 (1994) 81-91.
    [178] S.B. Kim, S.C. Hong, Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst, Applied Catalysis B: Environmental 35 (2002) 305-315.
    [179] Y. Lei, X. Chen, C. Xu, Z. Dai, K. Wei, Enhanced catalytic performance in the gas-phase epoxidation of propylene over Ti-modified MoO3–Bi2SiO5/SiO2 catalysts, Journal of Catalysis 321 (2015) 100-112.
    [180] J. He, Q. Zhai, Q. Zhang, W. Deng, Y. Wang, Active site and reaction mechanism for the epoxidation of propylene by oxygen over CuOx/SiO2 catalysts with and without Cs+ modification, Journal of Catalysis 299 (2013) 53-66.
    [181] W.-S. Lee, M. Cem Akatay, E.A. Stach, F.H. Ribeiro, W. Nicholas Delgass, Gas-phase epoxidation of propylene in the presence of H2 and O2 over small gold ensembles in uncalcined TS-1, Journal of Catalysis 313 (2014) 104-112.
    [182] X. Feng, X. Duan, H. Cheng, G. Qian, D. Chen, W. Yuan, X. Zhou, Au/TS-1 catalyst prepared by deposition–precipitation method for propene epoxidation with H2/O2: Insights into the effects of slurry aging time and Si/Ti molar ratio, Journal of Catalysis 325 (2015) 128-135.
    [183] B. Ohtani, Principle of Photocatalysis and Design of Active Photocatalysts, in: S.L. Suib (Ed.), New and Future Developments in Catalysis, Elsevier, Amsterdam, 2013, pp. 121-144.
    [184] H. Yoshida, T. Shimizu, C. Murata, T. Hattori, Highly dispersed zinc oxide species on silica as active sites for photoepoxidation of propene by molecular oxygen, Journal of Catalysis 220 (2003) 226-232.
    [185] V.-H. Nguyen, S.D. Lin, J.C.S. Wu, H. Bai, Influence of co-feeds additive on the photo-epoxidation of propylene over V–Ti/MCM-41 photocatalyst, Catalysis Today.
    [186] N.A. Bhore, M.T. Klein, K.B. Bischoff, The delplot technique: a new method for reaction pathway analysis, Industrial & Engineering Chemistry Research 29 (1990) 313-316.
    [187] N. Mizuno, K. Yamaguchi, K. Kamata, Epoxidation of olefins with hydrogen peroxide catalyzed by polyoxometalates, Coordination Chemistry Reviews 249 (2005) 1944-1956.

    QR CODE