簡易檢索 / 詳目顯示

研究生: 何光絢
Kuang-Hsuan Ho
論文名稱: 微通道系統應用於環氧丙烷與二氧化碳環加成反應之研究
Study on Cycloaddition Reaction of Propylene Oxide and Carbon Dioxide with Using Microchannel System
指導教授: 曾堯宣
Yao-Hsuan Tseng
口試委員: 曾堯宣
Yao-Hsuan Tseng
李豪業
Hao-Yeh Lee
何郡軒
Jinn-Hsuan Ho
蔣雅郁
Ya-Yu Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 67
中文關鍵詞: 微通道系統碳酸丙烯酯二氧化碳環氧丙烷
外文關鍵詞: Microchannel System, Carbon dioxide, Propylene oxide, Propylene carbonate
相關次數: 點閱:331下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 中文摘要 IV ABSTRACT V 致謝 VI 圖目錄 IX 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 環氧丙烷 3 1.3 碳酸丙烯酯 5 1.4 研究動機與目的 8 第二章 文獻回顧 9 2.1 碳酸丙烯酯的製備 9 2.1.1 1,2-丙二醇與尿素合成法 9 2.1.2 1,2-丙二醇與酯的酯交換法 10 2.1.3 1,2-丙二醇與二氧化碳合成法 11 2.1.4 環氧丙烷與二氧化碳合成法 12 2.1.5 不同方法之比較 16 2.1.6 碳酸丙烯酯商業化製程 17 2.2 微化工技術與微通道系統 19 2.2.1 微化工技術之原理與特徵 19 2.2.2 微化工技術設備分類 20 2.2.3 微化工技術發展現況 21 第三章 實驗方法與步驟 23 3.1 實驗藥品 23 3.2 實驗設備 23 3.3 分析儀器 25 3.4 微通道系統 26 3.5 實驗設計 30 3.6 實驗步驟 32 3.6.1 微通道系統操作流程 32 3.6.2 環氧丙烷環加成實驗流程 33 3.6.3 串聯式微通道系統實驗流程 35 3.7 計算公式 37 第四章 結果與討論 39 4.1 溫度對反應的影響 39 4.2 進料比例對反應的影響 43 4.3 滯留時間對反應的影響 50 4.4 壓力對反應的影響 53 4.5 系統優化設計 54 4.5.1 更換微混合器對反應的影響 54 4.5.2 放大化試驗 56 第五章 結論與未來展望 59 5.1 結論 59 5.2 未來展望 61 5.2.1 微通道系統改良 61 5.2.2 產品純化與觸媒系統改良 62 參考文獻 63

    [1] R. P. Feynman, "Plenty of Room at the Bottom," in APS annual meeting, 1959.
    [2] 董永貴, "微型感測器," 清華大學出版社, 2007.
    [3] S. Honary, and F. Zahir, "Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 1)," Tropical Journal of Pharmaceutical Research, vol. 12, no. 2, pp. 255-264, 2013, Art.
    [4] A. Khitab, and M. Tausif Arsha, "Nano construction materials," Reviews on advanced materials science, vol. 38, no. 2, 2014, Art.
    [5] M. Holzinger, A. Le Goff, and S. Cosnier, "Nanomaterials for biosensing applications: a review," Frontiers in chemistry, vol. 2, p. 63, 2014, Art.
    [6] J. K. Patra, G. Das, L. F. Fraceto, E. V. R. Campos, M. P. Rodriguea-Torres, L. S. Acosta-Torres, L. A. Diaz-Torres, R. Grillo, M. K. Swamy, S. Sharma, S. Habtemaraim, and S. Han-Seung, "Nano based drug delivery systems: recent developments and future prospects," Journal of nanobiotechnology, vol. 16, no. 1, pp. 1-33, 2018, Art.
    [7] J. R. Burns, and C. Ramshaw, "Development of a microreactor for chemical production," Chemical Engineering Research and Design, vol. 77, no. 3, pp. 206-211, 1999, Art.
    [8] J. Brandner, M. Fichtner, and K. Schubert, "Electrically heated microstructure heat exchangers and reactors," in Microreaction Technology: Industrial Prospects: Springer, 2000, pp. 607-616.
    [9] R. S. Benson, and J. W. Ponton, "Process miniaturisation: a route to total environmental acceptability?," Chemical engineering research & design, vol. 71, no. 2, pp. 160-168, 1993, Art.
    [10] 米多,孔庆国, "2020年碳酸二甲酯技术与市场," 化学工业,2021,39(03):76-80.
    [11] 赵艳敏,刘绍英,王公应, "碳酸丙烯酯/碳酸乙烯酯的制备技术研究进展," 现代化工, 2005 (z1): 19-22.
    [12] 赵元,漆新华,何良年,庄源益, "碳酸丙烯酯合成的工艺绿色化进展," 化学世界, 2008, 49(11): 696-699.
    [13] Z. W. Gao, S. F. Wang, and C. J. Xia, "Synthesis of propylene carbonate from urea and 1, 2-propanediol." Chinese Chemical Letters 20.2 (2009): 131-135.
    [14] D. Wu, Y. Guo, S. Geng, and Y. Xia, "Synthesis of propylene carbonate from urea and 1, 2-propylene glycol in a monolithic stirrer reactor." Industrial & Engineering Chemistry Research 52.3 (2013): 1216-1223.
    [15] X. Zhao, Y. Zhang, and Y. Wang, "Synthesis of propylene carbonate from urea and 1, 2-propylene glycol over a zinc acetate catalyst." Industrial & engineering chemistry research 43.15 (2004): 4038-4042.
    [16] G. L. Yu, X. R. Chen, and C. L. Chen, "Synthesis of propylene carbonate from urea and 1, 2-propylene glycol over ZnO/NaY catalyst." Reaction Kinetics and Catalysis Letters 97.1 (2009): 69-75.
    [17] S. Huang, J. Ma, J. Li, N. Zhao, W. Wei, and Y. Sun, "Efficient propylene carbonate synthesis from propylene glycol and carbon dioxide via organic bases." Catalysis Communications 9.2 (2008): 276-280.
    [18] S. Huang, S. Liu, J. Li, N. Zhao, W. Wei, and Y. Sun, "Modified zinc oxide for the direct synthesis of propylene carbonate from propylene glycol and carbon dioxide." Catalysis letters 118.3 (2007): 290-294.
    [19] S. I. Fujita, B. M. Bhanage, Y. Ikushima, M. Shirai, K. Torii, and M. Arai, "Chemical fixation of carbon dioxide to propylene carbonate using smectite catalysts with high activity and selectivity." Catalysis letters 79.1 (2002): 95-98.
    [20] W. L. Dai, S. F. Yin, R. Guo, S. L. Luo, X. Du, and C. T. Au, "Synthesis of propylene carbonate from carbon dioxide and propylene oxide using Zn-Mg-Al composite oxide as high-efficiency catalyst." Catalysis letters 136.1 (2010): 35-44.
    [21] A. I. Adeleye, D. Patel, D. Niyogi, and B. Saha, "Efficient and greener synthesis of propylene carbonate from carbon dioxide and propylene oxide." Industrial & Engineering Chemistry Research 53.49 (2014): 18647-18657.
    [22] M. Liu, X. Li, L. Liang, X. Gao, and J. Sun, "Facile synthesis of [urea-Zn] I2 eutectic-based ionic liquid for efficient conversion of carbon dioxide to cyclic carbonates." Journal of Molecular Catalysis A: Chemical 412 (2016): 20-26.
    [23] X. D. Lang, and L. N. He, "Green catalytic process for cyclic carbonate synthesis from carbon dioxide under mild conditions." The Chemical Record 16.3 (2016): 1337-1352.
    [24] H. G. Kim, C. S. Lim, D. W. Kim, D. H. Cho, D. K. Lee, and J. S. Chung, "Multifunctional alkanolamine as a catalyst for CO2 and propylene oxide cycloaddition." Molecular Catalysis 438 (2017): 121-129.
    [25] L. Zhang, Y. Luo, D. Niu, X. Yu, and J. Lu, "Electrocatalytic synthesis of propylene carbonate from CO2 and propylene oxide under mild conditions." Chinese Journal of Catalysis 28.2 (2007): 100.
    [26] 江国防,孟凡燕,張晓辉,李文盛,常季良, "碳酸丙烯酯的制备方法," CN 10276619(2012).
    [27] 田恒水,朱云峰,郝晔, "环状烷基碳酸酯的生产工艺," CN100453540(2009).
    [28] 王春梅,滕文彬,杜桂强,宋世晶, "一种采用复合离子液体催化剂制备环状碳酸酯的系统及工艺," CN 106588863(2017).
    [29] 钟建交,李大海,曾智兵,罗荣昌, "基于二氧化碳原料的碳酸丙烯酯制备方法," WO 2021003974(2021).
    [30] 吕小兵,張英菊,何仁,王辉,梁斌, "用于合成环状碳酸酯的高活性催化剂," CN 1189246(2005).
    [31] 郭春祥,刘晓放,何良年,张洪学, "利用常压二氧化碳与环氧化物反应制备环状碳酸酯的方法," CN 104496959(2016).
    [32] 张君君,钱俊杰,殷芳喜,梅支舵,陈永礼, "一种催化剂以及使用该催化剂制备碳酸丙烯酯的方法," CN 102302952(2012).
    [33] 王宝荣,林民,吳国文,朱斌,史春风,舒兴田,彭欣欣, "一种碳酸丙烯酯的合成方法," CN 104876906(2017).
    [34] 陳光文,袁权, "微化工技術,", 化工學報, vol. 54, no. 4, pp. 427-439, 2003.
    [35] A. Pradeep, B. G. Nair, P. V. Suneesh, and T. S. Babu, "Enhancement in mixing efficiency by ridges in straight and meander microchannels." Chemical Engineering and Processing-Process Intensification 159 (2021): 108217.
    [36] 微井科技. "关于微通道的理论基础、应用、行业现状."
    [37] 李友凤,叶红齐,周虎,何显达, "撞击流微反应器气液传质研究," 化学工程, no. 2012年 03, pp. 48-52+66, 2012.
    [38] 马昱刚,宋绍富, "微通道反应器内CO2传质反应行为研究,"化学工程, no. 2020年 01, pp. 60-63,73, 2020.
    [39] 初广文,廖洪钢,王丹,李晖,李洒,姜红,金万勤,陈建峰, "微纳介尺度气液反应过程强化,"化工学报, no. 2021年 07, pp. 3435-3444, 2021.
    [40] 王冠球,林冠屹,朱春英,付涛涛,马友光, "微通道反应器的一维放大及气液传质特性,"化工学报, no. 2021年 02, pp. 937-944, 2021.
    [41] 杨哲,郗大来,李宁,张洪姣, "微通道反应器的研究进展,"建筑·建材·装饰, no. 2019年 18, pp. 188,194-188,194, 2019.
    [42] 凌芳,顾小焱,柯德宏,王涛, "微通道反应器的发展研究进展,"上海化工, no. 2017年 04, pp. 35-38, 2017.
    [43] 张丽,罗仪文,钮东方,虞新迪,陆嘉星, "温和条件下电催化CO2与环氧丙烷合成碳酸丙烯酯,"催化學報, vol. 28, no. 2, pp. 100-102, 2007.
    [44] 白璐,朱春英,付涛涛,马友光, "并行微通道内气液相分配规律,"化工学报, no. 2014年 01, pp. 108-115, 2014.
    [45] 李博文,刘吉晓,郭士杰,李铁军, "基于微流控驻停气泡的连续型气-液微反应器,"液压与气动, no. 2018年 09, pp. 15-19, 2018.
    [46] 李汉荣,徐长河, "微通道反应器连续生产次氯酸钠工艺,"氯碱工业, no. 2020年 11, pp. 27-29, 2020.
    [47] 严生虎,张稳,沈卫,沈介发,马兵,刘建武,张跃, "微通道中由二氯丙醇连续合成环氧氯丙烷的工艺研究,"高校化学工程学报, no. 2014年 02, pp. 352-357, 2014.
    [48] R. Lebl, Y. Zhu, D. Ng, C. H. Hornung, D. Cantillo, and C. O. Kappe, "Scalable continuous flow hydrogenations using Pd/Al2O3-coated rectangular cross-section 3D-printed static mixers." Catalysis Today 383 (2022): 55-63.
    [49] 北京华经视点信息咨询有限公司, "2020-2025年中國碳酸丙烯酯市場現狀及行業供需形勢深度調查報告," 2019
    [50] 北京观研天下信息咨询有限公司, "2021年中国碳酸二甲酯市场分析报告-市场规模现状与未来趋势研究," 2021
    [51] 王涛, 范士敏, 冉千平, 马建峰, 亓帅, 王兵, 杨勇, "一种非均相催化剂及应用其制备环碳酸酯的方法," CN 107715918(2020).
    [52] Li, M. R., Zhang, M. C., Yue, T. J., Lu, X. B., & Ren, W. M. (2018). Highly efficient conversion of CO 2 to cyclic carbonates with a binary catalyst system in a microreactor: intensification of “electrophile–nucleophile” synergistic effect. RSC advances, 8(68), 39182-39186.
    [53] Zhao, Y., Yao, C., Chen, G., & Yuan, Q. (2013). Highly efficient synthesis of cyclic carbonate with CO 2 catalyzed by ionic liquid in a microreactor. Green chemistry, 15(2), 446-452.

    無法下載圖示 全文公開日期 2032/08/03 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE