簡易檢索 / 詳目顯示

研究生: 王逸平
Yi-Ping Wang
論文名稱: 硫化銦系列半導體之晶體成長及特性研究
Crystal Growth and Characterization of III-VI Indium Sulfide Compound Semiconductors
指導教授: 黃鶯聲
Ying-Sheng Huang
何清華
Ching-Hwa Ho
口試委員: 程光蛟
Kwong-Kau Tiong
陳永芳
Yang-Fang Chen
林浩雄
Hao-Hsiung Lin
林泰源
Tai-Yuan Lin
郭東昊
Dong-Hau Kuo
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 113
中文關鍵詞: 硫化銦熱調制壓電調制能隙
外文關鍵詞: In2S3, In6S7
相關次數: 點閱:158下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文是以化學氣相傳導法利用三氯化碘(ICl3)為傳導劑成長β-In2S3及物理氣相傳輸法成長InS及In6S7來得到此硫化銦系列半導體之晶體,同時對此系列晶體之特性藉由光學量測的方式對其特性加以研究及討論。由X-ray繞射及拉曼量測之分析可以確定此系列單晶為單相化合物及其結構。
    粉末X-ray繞射分析可得之所成長出來In2S3為β相且為四方晶系(tetragonal)而In6S7為單斜結構(monoclinic),計算後所得之晶格常數和文獻比對均為符合。藉由拉曼量測的技術並配合過去文獻比對,可確定InS為斜方晶系(orthorhombic)其空間群為D122h。在光學特性方面利用熱調制光譜、壓電調制光譜及吸收光譜得知在此硫化銦系統中InS為間接能隙半導體,而β-In2S3及In6S7均為直接能隙半導體。其能隙在300K時分別為1.85 eV、1.935 eV和0.93 eV。
    在β-In2S3部份除了在近能隙的躍遷使用熱調制光譜觀察到為1.935 eV之外,同時藉由光激發螢光光譜、光電導實驗及表面光電導量測也發現到在能隙之上有來自表面態的貢獻而能隙之下也有躍遷訊號,其來源為本身晶體的缺陷。
    在能源材料In6S7的研究中利用壓電調制及穿透光譜得到此化合物為一直接能隙半導體其能隙在300K實為0.93 eV。而光激發螢光光譜的量測中觀察到在近能隙處有一激子的訊號來源,因此更進一步證明此材料為直接能隙半導體。同時藉光電轉換實驗可證明此材料對於太陽光譜的吸收可擴展至近紅外的區域。
    最後在InS晶體討論中使用了吸收光譜及調制光譜的技術證明此半導體為間接能隙半導體其間接能隙位置於300K時為1.85 eV,在壓電調制的實驗當中和文獻相比對亦發現此材料的直接躍遷訊號在室溫下為2.42 eV。
    綜合以上幾點可以得知此系統中使用不同的成長溫度條件和較小化學計量差距下,會有豐富的結構、能隙及特性的不同。同時也提出此三種晶體可能性的能帶結構。


    III-VI indium sulfide compound semiconductors have been grown by chemical vapor transport (CVT) method using ICl3 as a transport agent. The physical vapor transport (PVT) method was also used. Detailed characterization of the materials were carried out by using X-ray diffraction, Raman scattering, absorption, modulation reflectance, photoluminescence (PL), surface photoresponse (SPR) and photoconductivity (PC) techniques.
    X-ray analysis confirms that In2S3 crystal is of β phase tetragonal structure, while In6S7 crystal is monoclinic. Raman measurement reveals that InS crystallizes in orthorhombic structure with space group D122h. Optical property of InS, β-In2S3 and In6S7 was characterized using thermalreflectance (TR), piezoreflectance (PzR) and absorption measurements, which showed that InS is an indirect semiconductor, and those of β-In2S3 and In6S7 are direct semiconductors. The band gaps of InS, β-In2S3 and In6S7 at 300 K are determined to be 1.85 eV, 1.935 eV and 0.93 eV, respectively.
    For β-In2S3, the PC and SPR measurements have indicated not only the band-edge transitions but also transition features below and above the band edge. The below band-edge transition can be ascribed to the present of defect states. The defect and above-band-edge transition emissions of β-In2S3 crystal were characterized experimentally by PL measurements.
    Optical evidence of band gap, band-edge exciton, and white-light photoelectric conversion for the solar-energy material In6S7 has been demonstrated. The room temperature direct gap of In6S7 at 0.93 eV is extremely suitable for absorption of full sunlight spectrum extension to the near infrared region.
    The optical properties of InS were also examined. The band-edge was evaluated and identified using PzR and absorption measurements. Absorption measurement indicated indirect semiconducting nature for InS with a room temperature indirect band gap of 1.85 eV. The room temperature direct band gap of InS was determined to be 2.42 eV by the PzR measurement.
    In this study, we have demonstrated the ability to synthesize In-S compound semiconductors either in the forms of indirect band gap orthorhombic InS or direct band gap tetragonal β-In2S3 or direct band gap monoclinic In6S7 by using different growth conditions and stoichiometry in the system. These material systems have exhibited quite different structural and optical characters. From the experimental observations, band diagrams for the as-grown InS, β-In2S3 and In6S7 were constructed and presented.

    Table of Contents Abstract I Acknowledgements V Symbols and Abbreviations VIII List of Figures IX List of Tables XII Chapter 1. Introduction 1 1.1 Introduction 1 1.2 Outline of dissertation 4 Chapter 2. Crystal growth and structure analysis 7 2.1 The single crystal growth 7 2.2 The crystallographic study of In-S system single crystals 8 2.2.1 Powder X-ray diffraction: experimental details 9 2.2.2 Powder X-ray diffraction: results and discussion 10 2.2.3 Raman spectroscopy: experimental details 11 2.2.4 Raman spectroscopy: results and discussion 11 Chapter 3. Experimental setup for the measurements 23 3.1 The transmittance measurements 23 3.2 Modulation spectroscopy 25 3.2.1 Piezoreflectance (PzR) 28 3.2.2 Thermoreflectance (TR) 28 3.3 Optical measurements of photoresponse 29 3.3.1 Surface photovoltage (SPV) 30 3.3.2 Surface Photoconductive response (SPR) 30 3.3.3 Photoconductivity (PC) 31 3.4 Photoluminescence (PL) 31 3.5 Temperature dependence characteristics of semiconductor 32 3.6 Photo voltage-current (V-I) measurement 33 Chapter 4. Optical characterization of β-In2S3 single crystals 42 4.1 Characterization of near-band-edge transitions in -In2S3 43 4.2 Temperature-dependent photoconductivity in - In2S3 47 4.3 The study of surface photoconductive response in - In2S3 51 4.4 Summary 55 Chapter 5. Optical characterization of band-edge property of In6S7 71 5.1 Results and discussion 71 5.2 Summary 75 Chapter 6. Optical characterization of direct Transition of InS 83 6.1 Results and discussion 83 6.2 Summary 84 Chapter 7. Conclusions 89 References 91 Publications 96

    References

    1.Duffin, W. J. and Hogg, J. H. C., “Crystalline Phases in the System In–In2S3”, Acta Crystallographica, Vol. 20, pp. 566-569 (1966).

    2.Hogg, J. H. C. and Duffin, W. J., “The Crystal Structure of In6S7”, Acta Crystallographica, Vol. 23, pp. 111-118 (1967).

    3.Gasanly, N. M., Dzhavadov, B.M., Ragimov, A. S., Tagirov, V. I., and Guseinov, R. E., “Long-Wave Optical Phonons in In6S7 Layer Crystals”, Physical Status Solidi B, Vol. 106, pp. K47-K51 (1981).

    4.Ansell H. G. and Boorman, R. S., “Phase Relationships in the In-S System”, Journal of the Electrochemical Society, Vol. 118, pp. 133-136 (1971).

    5.Diehl, R., Carpentier, C. D., and Nitsche, R., “The Crystal Structure of γ-In2S3 Stabilized by As or Sb”, Acta Crystallographica Section B, Vol. 32, pp. 1257-1260 (1976).

    6.Stubbs, M. F., Schufle, J. A., Thompson, A. J., and Duncan, J. M., “The In-In2S3 System”, Journal of the American Chemical Society, Vol. 74, pp. 1441-1443 (1952).

    7.Predel, B., Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys, New Series, Springer, Berlin, Vol. 5G, pp. 1-4 (1997).

    8.Spiering, S., Hariskos, D., Powalla, M., Naghavi, N., and Lincot, D., “Cd-Free Cu(In,Ga)Se2 Thin-Film Solar Modules with In2S3 Buffer Layer by ALCVD”, Thin Solid Films, Vol. 431-432, pp. 359-363 (2003).

    9.Wilson, K. C., Sebastian, T., John, T. T., Kartha, C. S., Vijayakumar, K. P., Agudapathi, P., and Nair, K. G. M., “Implantation Assisted Copper Diffusion: A Different Approach for the Preparation of CuInS2/In2S3 p-n Junction”, Applied Physics Letters, Vol. 89, 013510 (3pp) (2006).

    10.Jayakrishnan, R., Sebastian, T., John, T. T., Kartha, C. S., and Vijayakumar, K. P., “Photoconductivity in Sprayed β-In2S3 Thin Films under Sub-Band-Gap Excitation of 1.96 eV”, Journal of Applied Physics, Vol. 102, 043109 (8pp) (2007).

    11.Spiering, S., Eicke, A., Hariskos, D., Powalla, M., Naghavi, N., and Lincot, D., “Large-Area Cd-Free CIGS Solar Modules with In2S3 Buffer Layer Deposited by ALCVD”, Thin Solid Films, Vol. 451-452, pp. 562-566 (2004).

    12.Bube, R. H. and McCarroll, W. H., “Photoconductivity in Indium Sulfide Powders and Crystals”, Journal of Physics and Chemistry of Solids, Vol. 10, pp. 333-335 (1959).

    13.Bhira, L., Essaidi, H., Belgacem, S., Couturier, G., Salardenne, J., Barreaux, N., and Bernede, J. C., “Structural and Photoelectrical Properties of Sprayed β-In2S3 Thin Films”, Physical Status Solidi A, Vol. 181, pp. 427-435 (2000).

    14.Rehwald, W. and Harbeke, G., “On the Conduction Mechanism in Single Crystal β-Indium Sulfide In2S3”, Journal of Physics and Chemistry of Solids, Vol. 26, pp. 1309-1324 (1965).

    15.Garlick, G. F. J., Springford, M., and Checinska, H., “The Infra-Red Emission of Indium Sesquisulphide”, Proceedings of the Physical Society, Vol. 82, p. 16 (1963).

    16.Sandoval-Paz, M. G., Sotelo-Lerma, M., Valenzuela-Jauregui, J. J., Flores-Acosta, M., and Ramirez-Bon, R., “Structural and Optical Studies on Thermal-Annealed In2S3 Films Prepared by the Chemical Bath Deposition Technique”, Thin Solid Films, Vol. 472, pp. 5-10 (2005).

    17.Kim, W. T. and Kim, C. D., “Optical Energy Gaps of β‐In2S3 Thin Films Grown by Spray Pyrolysis”, Journal of Applied Physics, Vol. 60, pp. 2631-2633 (1986).

    18.Ho, C. H., “Growth and Characterization of Near-Band-Edge Transitions in β-In2S3 Single Crystals”, Journal of Crystal Growth, Vol. 312, pp. 2718-2723 (2010).

    19.Jayakrishnan, R., John, T. T., Kartha, C. S., Vijayakumar, K. P., Abe, T., and Kashiwaba, Y., “Defect Analysis of Sprayed β-In2S3 Thin Films Using Photoluminescence Studies”, Semiconductor Science and Technology, Vol. 20, pp. 1162-1167 (2005).

    20.Pai, R. R., John, T. T., Kashiwaba, Y., Abe, T., Vijayakumar, K. P., and Kartha, C. S., “Defect Characterization of Spray Pyrolised β -In2S3 Thin Film Using Thermally Stimulated Current Measurements”, Journal of Materials Science, Vol. 40, pp. 741-746 (2005).

    21.Robles, R., Barreau, N., Vega, A., Marsillac, S., Bernede, J. C., and Mokrani, A., “Optical Properties of Large Band Gap β-In2S3−3xO3x Compounds Obtained by Physical Vapour Deposition”, Optical Materials, Vol. 27, pp. 647-653 (2005).

    22.King, P. D. C., Veal, T. D., Fuchs, F., Wang, C. Y., Payne, D. J., Bourlange, A., Zhang, H., Bell, G. R., Cimalla, V., Ambacher, O., Egdell, R. G., Bechstedt, F., and McConville, C. F., “Band Gap, Electronic Structure, and Surface Electron Accumulation of Cubic and Rhombohedral In2O3”, Physical Review B, Vol. 79, 205211 (10pp) (2009).

    23.Ho, C. H., Chan, C. H., Tien, L. C., and Huang, Y. S., “Direct Optical Observation of Band-Edge Excitons, Band Gap, and Fermi Level in Degenerate Semiconducting Oxide Nanowires In2O3”, The Journal of Physical Chemistry C, Vol. 115, pp. 25088-25096 (2011).

    24.Lazell, M., O'Brien, P., Otway, D. J., and Park, J. H., “Single Source Molecular Precursors for the Deposition of III/VI Chalcogenide Semiconductors by MOCVD and Related Techniques”, Journal of the Chemical Society, Dalton Transactions, Vol. 24, pp. 4479-4486 (2000).

    25.Naghavi, N., Spiering, S., Powalla, M., Cavana, B., and Lincot, D., “High-Efficiency Copper Indium Gallium Diselenide (CIGS) Solar Cells with Indium Sulfide Buffer Layers Deposited by Atomic Layer Chemical Vapor Deposition (ALCVD)”, Progress in Photovoltaics: Research and Applications, Vol. 11, pp. 437-443 (2003).

    26.Ho, C. H., “Single Crystal Growth and Characterization of Copper Aluminum Indium Disulfide Chalcopyrites”, Journal of Crystal Growth, Vol. 317, pp. 52-59 (2011).

    27.Grossberg, M., Krustok, J., Raudoja, J., Timmo, K., Altosaar, M., and Raadik, T., “Photoluminescence and Raman Study of Cu2ZnSn(SexS1-x)4 Monograins for Photovoltaic Applications”, Thin Solid Films, Vol. 519, pp. 7403-7406 (2011).

    28.Wang, Y. P., Levcenco, S., Dumcenco, D. O., Huang, Y. S., Ho, C. H., and Tiong, K. K., “Composition Dependent Band Gaps of Single Crystal Cu2ZnSn(SxSe1-x)4 Solid Solutions”, Solid State Phenomena, Vol. 194, pp. 139-143 (2012).

    29.Qasrawi, A. F. and Gasanly, N. M., “Light Illumination Effect on the Electrical and Photovoltaic Properties of In6S7 Crystals”, Journal of Physics: Condensed Matter, Vol. 18, pp. 4609-4614 (2006).

    30.Gamal, G. A., “On the Conduction Mechanism and Thermoelectric Phenomenon in In6S7 Layer Crystals”, Crystal Research and Technology, Vol. 32, pp. 723-731 (1997).

    31.Qasrawi, A. F. and Gasanly, N. M., “Acoustic Phonons Scattering Mobility and Carrier Effective Mass in In6S7 Crystals”, Journal of Alloys and Compounds, Vol. 426, pp. 64-66 (2006).

    32.Tagirov, V. I., Ismailov, I. M., and Khusein, A. K., “Investigation of the Absorption Band Edge of In6S7”, Soviet Physics Semiconductors, Vol. 12, p. 1205 (1978).

    33.Gavaleshko, N. P., Kitsa, M. S., Savchuk, A. I., and Simchuk, R. N., “Photoelectric Properties of In6S7 and In6Se7 Single Crystals”, Soviet Physics Semiconductors, Vol. 14, p. 822 (1980).

    34.Faradzhev, F. E., Gasanly, N. M., and Ragimov, A. S., “Pressure Dependence of the Raman Spectra of Indium Sulphide”, Solid State Communications, Vol. 39, pp. 587-589 (1981).

    35.Faradev, F. E., Gasanly, N. M., Mavrin, B. N., and Melnik, N. N., “Raman Scattering in Some III-VI Layer Single Crystals”, Physical Status Solidi B, Vol. 85, pp. 381-386 (1978).

    36.Nishino, T. and Hamakawa, Y., “Preparation and Properties of InS Single Crystals”, Japanese Journal of Applied Physics, Vol. 16, pp. 1291-1300 (1977).

    37.Huang, Y. S. and Lin, S. S., “Growth and Characterization of RuS2 Single Crystals”, Materials Research Bulletin, Vol. 23, pp. 277-285 (1988).

    38.Ho, C. H. and Lin, S. L., “Optical Properties of the Interband Transitions of Layered Gallium Sulfide”, Journal of Applied Physics, Vol. 100, 083508 (6pp) (2006).

    39.Horley, G. A., O'Brien, P., Park, J. H., White, A. J. P., and Williams, D. J., “Deposition of Tetragonal β-In2S3 Thin Films from Tris(N,N-Diisopropylmonothiocarbamato)Indium(III), In(SOCNiPr2)3, by Low Pressure Metal-Organic Chemical Vapour Deposition”, Journal of Materials Chemistry, Vol. 9, pp. 1289-1292 (1999).

    40.Lucena, R., Aguilera, I., Palacios, P., Wahnon, P., and Conesa, J. C., “Synthesis and Spectral Properties of Nanocrystalline V-Substituted In2S3, a Novel Material for More Efficient Use of Solar Radiation”, Chemistry of Materials, Vol. 20, pp. 5125-5127 (2008).

    41.Ho, C. H., “Enhanced Photoelectric-Conversion Yield in Niobium-Incorporated In2S3 with Intermediate Band”, Journal of Materials Chemistry, Vol. 21, pp. 10518-10524 (2011).

    42.Schubert, K., Dorre, E., and Gunzel, E., “Kristallchemische Ergebnisse an Phasen Aus B-Elementen”, Naturwissenschaften, Vol. 41, p. 448 (1954).

    43.何清華,「層狀化合物半導體ReS2-xSex之單晶成長及特性研究」,博士論文,國立臺灣科技大學,台北市 (1999)。

    44.Pankove, J. I., Optical Processes in Semiconductors, Dover, New York, (1975).

    45.Cardona, M., Modulation Spectroscopy, Academic Press, New York, (1969).

    46.Aspnes, D. E., Handbook on Semiconductors, North-Holland, Amsterdam, Vol. 2, pp. 109-154 (1980).

    47.Pollak, F. H. and Shen, H., “Modulation Spectroscopy of Semiconductors: Bulk/Thin Film, Microstructures, Surfaces/Interfaces and Devices”, Materials Science and Engineering R: Reports, Vol. 10, pp. xv-xvi, 275-374 (1993).

    48.Seraphin, B. O. and Bottka, N., “Band-Structure Analysis from Electro-Reflectance Studies”, Physical Review, Vol. 145, pp. 628-636 (1966).

    49.Ho, C. H., Lee, H. W., and Cheng, Z. H., “Practical Thermoreflectance Design for Optical Characterization of Layer Semiconductors”, Review of Scientific Instruments, Vol. 75, pp. 1098-1102 (2004).

    50.Schroder, D. K., “Surface Voltage and Surface Photovoltage: History, Theory and Applications”, Measurement Science and Technology, Vol. 12, pp. R16-R31 (2001).

    51.Varshni, Y. P., “Temperature Dependence of the Energy Gap in Semiconductors”, Physica (amsterdam), Vol. 34, pp. 149-154 (1967).

    52.Vina, L., Logothetidis, S., and Cardona, M., “Temperature Dependence of the Dielectric Function of Germanium”, Physical Review B, Vol. 30, pp. 1979-1991 (1984).

    53.Park, K. H., Jang, K., and Son, S. U., “Synthesis Optical Properties, and Self-Assembly of Ultrathin Hexagonal In2S3 Nanoplates”, Angewandte Chemie International Edition, Vol. 45, pp. 4608-4612 (2006).

    54.Kim, W. T., Lee,W. S., Chung, C. S., and Kim, C. D., “Optical Properties of In2S3:Co2+ Single Crystals”, Journal of Applied Physics, Vol. 63, pp. 5472-5475 (1988).

    55.Ho, C. H., Wang, Y. P., Chan, C. H., Huang, Y. S., and Li, C. H., “Temperature-Dependent Photoconductivity in β-In2S3 Single Crystals”, Journal of Applied Physics, Vol. 108, 043518 (4pp) (2010).

    56.Cavalcoli, D., Pandey, S., Fraboni, B., and Cavallini, A., “Band Gap Shift in Al1−xInxN/AlN/GaN Heterostructures Studied by Surface Photovoltage Spectroscopy”, Applied Physics Letters, Vol. 98, pp. 142111-142113 (2011).

    57.Kronik, L. and Shapira, Y., “Surface Photovoltage Phenomena: Theory, Experiment, and Applications”, Surface Science Reports, Vol. 37, pp. 1-206 (1999).

    QR CODE