簡易檢索 / 詳目顯示

研究生: 王必先
Pi-Hsien Wang
論文名稱: 二氧化銥單晶表面的掃描穿隧式電子顯微術研究
STM Studies of IrO2 Single Crystal Surfaces
指導教授: 黃鶯聲
Ying-Sheng Huang
白偉武
Woei Wu Pai
口試委員: 蔡大翔
Dah-shyang Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 94
中文關鍵詞: 二氧化銥金紅石氧化物掃描穿隧式電子顯微術
外文關鍵詞: IrO2, rutile, oxide, STM
相關次數: 點閱:214下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用掃描穿隧式電子顯微術(Scanning tunneling microscopy:STM)觀察二氧化銥(IrO2)單晶的表面,使用直立薄樣品裝置在超高真空中以切出劈裂面的方式,首次成功獲得原子級的幾個IrO2晶面,獲得晶面(110)、(120)、(130)、(67 );晶體結構的方向利用X光單晶繞射儀和X光繞射儀判別,並從STM觀察中獲得確認。這個實驗為氧化物晶體研究找到一個得到劈出原生平面的可行方法。
    在本實驗觀察到的這幾個IrO2晶面上,都可以看到亮暗間隔的原子列,符合橋接氧寬度距離,有如文獻中類似結構的TiO2和RuO2(110)晶面觀察表面顯微結果。本實驗中,劈裂面上容易存在劈裂的缺陷,使平面上會出現階梯和顆粒;IrO2表面結構大致穩定,不易受時間和些微溫度而明顯改變,超高真空加熱的穩定性可以維持到約230℃,230℃以上表面開始會有4-5nm大小的顆粒形成。在表面施加氧氣時(0.3~0.6 L),表面的原子列上會多出明顯的亮條紋,此條紋會受探針偏壓而改變亮條紋出現的清晰度。依據RuO2和TiO2文獻的說法,氧氣吸附應當是不飽和的1f-cus-Ir位置,但是過渡金屬氧化物的電子軌域複雜、還有各種不確定因素,真正的氣體吸附機制還有賴更深入的研究。


    We present scanning tunneling microscopy (STM) studies of Iridium dioxide (IrO2) single crystal surfaces. Using a cross-sectional STM setting and in-situ cleaving technique in ultrahigh vacuum, we have successfully obtained atom-resolved images of several IrO2 faces, e.g., (110), (120), (130), and (67 ) for the first time. To obtain different miller planes, samples with thickness less than 100 microns must be oriented by X-ray diffractometry precisely. Our approach appears generally applicable for other oxides lacking natural cleavable planes.
    Bridge oxygen rows on IrO2[110] and its vicinal planes were found to be a common feature, similar to previous reports for TiO2(110) and RuO2(110). There exist cleaving damages and mild thermal treatment alleviates this problem. The surface structure is stable again thermal annealing up to ~230℃, above which 4-5 nm size aggregation starts to form. Oxygen rows on fresh-cleaved surfaces showed uniform contrast. Prolonged exposure to background gas leads to some bright and dim contrast of unknown origin. Preliminary studies of oxygen adsorption suggests plausible adsorption site as unsaturated Ir atoms. However, unexpected intricacy of imaging mechanism and effect of tip condition and oxygen vacancy has not been unambiguously determined. This calls for further detailed studies.

    論文摘要 I Abstract II 誌謝 III 目錄 IV 圖索引 VI 第一章 緒論 1 1.1 二氧化銥的特性和應用 1 1.2 金紅石(Rutile)的晶體結構 3 1.3 金屬氧化物表面的顯微研究文獻回顧 4 1.3.1表面顯微研究 4 1.3.2 金紅石(110)表面的顯微結構 5 1.4 STM觀察IrO2之研究動機 10 第二章 實驗方法與原理 11 2.1 樣品 11 2.2 晶體結構分析儀器 14 2.2.1 X-光單晶繞射儀 14 2.2.2 X光繞射儀 15 2.3 表面形貌研究方法 17 2.4 表面顯微研究儀器 19 2.4.1 原子力顯微鏡AFM 19 2.4.2 掃描穿隧式電子顯微鏡STM 22 2.4.3 STM探針接近樣品操作 25 2.5 樣品準備方式 27 2.5.1 單晶樣品拋光 27 2.5.2 STM的樣品裝置 30 2.6 STM真空腔內的設備 32 第三章 金紅石表面顯微觀察結果 36 3.1 IrO2單晶XRD分析 36 3.2 二氧化銥單晶表面顯微觀察 40 3.3 劈裂面的表面顯微結構 45 3.3.1 二氧化銥單晶結構模型 45 3.3.2 單晶的劈裂方法 ………………………………………………56 3.3.3 STM觀察IrO2單晶結構 63 3.3.4 二氧化銥表面氧氣吸附 ………………………………………73 3.4 補充—奈米管和奈米柱在AFM和STM下的形貌 76 3.4.1 樣品說明 76 3.4.2 AFM掃描奈米管和奈米柱的頂端 77 3.4.3平鋪奈米柱 78 3.4.4 結果討論 81 第四章 討論與分析 82 4.1 SPM下顯微結構的比較 82 4.2 二氧化銥單晶加熱的改變 84 4.3實驗中遇到的困難 88 4.4 未來展望 90 第五章 結論 91 參考文獻…………………………………………………………………………… 92 圖索引 圖1-1金紅石晶體結構硬球模型………………………………………………… 3 圖1-2 RuO2(110)的模型和STM影像……………………………………………… 6 圖1-3 RuO2(110)表面氧氣吸附STM圖…………………………………………… 7 圖1-4 TiO2的模型和STM影像…………………………………………………… 8 圖1-5 TiO2氧缺陷和氧吸附 ……………………………………………………… 9 圖2-1 光學顯微鏡下之IrO2單晶………………………………………………… 13 圖2-2 X-光單晶繞射儀 ……………………………………………………………16 圖2-3 X光粉末繞射儀系統…………………………………………………………16 圖2-4 原子力顯微鏡……………………………………………………………… 21 圖2-5 樣品探針之間原子力與距離的關係圖…………………………………… 21 圖2-6 STM系統………………………………………………………………………26 圖2-7 拋光器材。(a)研磨機;(b)樣品台;(c)樣品裝置………………………29 圖2-8 刀具………………………………………………………………………… 32 圖2-9 STM用鎢針的掃描式電子顯微鏡圖……………………………………… 33 圖2-10 離子濺射槍 ……………………………………………………………… 34 圖2-11 燈絲加熱樣品圖示 ……………………………………………………… 35 圖2-12 樣品溫度與燈絲控制條件關係圖 ……………………………………… 35 圖3-1 X光繞射儀分析IrO2單晶……………………………………………………37 圖3-2 X光單晶繞射儀分析IrO2單晶………………………………………………38 圖3-3 X光單晶繞射儀分析RuO2對稱單晶…………………………………………39 圖3-4 IrO2鏡面單晶(100)的原始表面………………………………………… 41 圖3-5 濺鍍和加熱處理後的表面,UHV-STM圖……………………………………41 圖3-6 針狀單晶表面……………………………………………………………… 42 圖3-7 拋光後的表面……………………………………………………………… 43 圖3-8 大氣的劈裂面UHV-STM圖………………………………………………… 44 圖3-9 取得(110)晶面的破裂方向 ……………………………………………… 46 圖3-10 (100)面切[001]方向出現(110)、(120)、(130) ………………………47 圖3-11 二氧化銥(110)硬球模型………………………………………………… 49 圖3-12 IrO2(120)硬球模型 ……………………………………………………… 50 圖3-13 IrO2(130)硬球模型 ……………………………………………………… 51 圖3-14 (101)面切[ 方向,得到(67 )或(110)…………………………… 52 圖3-15 IrO2(67 )模型…………………………………………………………… 55 圖3-16 (101)單晶的破裂方向…………………………………………………… 56 圖3-17 (101)單晶的劈斷示意圖………………………………………………… 57 圖3-18 切斷的作用力和破裂方向 ……………………………………………… 57 圖3-19 Rutile單位晶格的(100)和{110} ……………………………………… 58 圖3-20 Rutile單位晶格的(100)和{101} ……………………………………… 59 圖3-21 IrO2(100)單晶和{110}切的方向………………………………………… 60 圖3-22 STM探針掃描樣品;掃描出的圖形……………………………………… 60 圖3-23 Rutile單位晶格的(101)和{110} ……………………………………… 61 圖3-24 (101)切開方向…………………………………………………………… 61 圖3-25 (101)單晶………………………………………………………………… 61 圖3-26 IrO2(101)單晶和{110}切的方向………………………………………… 62 圖3-27 IrO2(110)STM圖,剛切開的表面,20x20nm……………………………… 65 圖3-28 IrO2(110)STM圖,剛切開的表面,200x200nm………………………… 66 圖3-29 (110)12天後,加熱232℃,表面出現很多顆粒…………………………67 圖3-30 IrO2(120)切開過一天 …………………………………………………… 68 圖3-31 (120)九天後,有一些顆粒,但原始結構仍可見…………………………68 圖3-32 IrO2(120)加熱230℃表面仍規則排列……………………………………69 圖3-33 (120)氖氣濺鍍500eV,0.6μA,10min,加熱297℃候的表面……………69 圖3-34 IrO2(130)六天後的表面 ………………………………………………… 70 圖3-35 (130)12天後的表面……………………………………………………… 70 圖3-36 剛切開時的(67 )………………………………………………………… 71 圖3-37 (67 )過一天的表面……………………………………………………… 72 圖3-38 IrO2(67 )加熱230℃,變成顆粒狀………………………………………72 圖3-39 (67 )施加氧氣0.3L………………………………………………………74 圖3-40 (67 )施加氧氣0.6L …………………………………………………… 75 圖3-41 IrO2(67 )氧氣吸附完後,改變電壓掃描 ……………………………… 75 圖3-42 奈米管和奈米柱的頂端 ………………………………………………… 77 圖3-43 STM圖奈米管平鋪在HOPG上 …………………………………………… 79 圖3-44 STM圖IrO2奈米柱平鋪在HOPG上……………………………………… 79 圖3-45 SEM圖IrO2奈米結構平鋪在HOPG上…………………………………… 80 圖4-1 Ru(0001)表面的RuO2(110)晶格………………………………………… 85 圖4-2 二氧化銥分解溫度與壓力的關係………………………………………… 85 圖4-3真空中加熱到400℃後切出新的表面………………………………………86 圖4-4 IrO2在真空中加熱到800℃ ……………………………………………… 86 圖4-5 IrO2表面濺鍍和退火……………………………………………………… 87

    W. D. Ryden and A. W. Lawson, ”Electronic transport properties of IrO2 and RuO2”, Phys. Rev. B, Vol.1, No.4, pp.1494 (1970).
    L. F. Mattheiss, ”Electronic structure of RuO2, OsO2, and IrO2”, Physical Review B, Vol.13, No.6, pp.2433 (1976).
    A. Osaka, T. Takatsuna, Y. Miura, “Iridium oxide films via sol-gel processing”, J. Non-crystalline Solids, Vol.178, pp.313 (1994).
    N. Bestaoui, E. Prouzet, P. Deniard, and R. Brec, “Structural and analytical characterization of an iridium oxide thin layer”, Thin Solid Films, Vol.235, pp.35 (1993).
    T. Ioroi, N. Kitazawa, K. Yasuda,Y. Yamamoto,H. Takenaka,“Iridium oxide/platinum electrocatalysts for unitized regenerative polymer electrolyte fuel cells”, J. Electrochem. Soc., Vol.147, No.6, pp.2018 (2000).
    K. W. Kim, E. H. Lee , J. S. Kim, K. H. Shin , B. I Jung , “A study on performance improvement of Ir oxide- coated titanium electrode for organic destruction”, Electrochimica Acta vol.47 pp.2525-2531 (2002)
    Sheng Yao, Min Wang, and Marc Madou, "A pH Electrode Based on Melt-Oxidized Iridium Oxide", J. Electrochem. Soc., Volume 148, Issue 4, pp. H29-H36 (2001)
    Zhi-Pan Liu, Stephen J. Jenkins, and David A. King, “Role of Nanostructured Dual-Oxide Supports in Enhanced Catalytic Activity: Theory of CO Oxidation Over Au/IrO2/TiO2", Phys. Rev. Lett. 93, 156102 (2004)
    T. Nakamura, Y. Nakao, A. Kamisawa, H. Takasu,”Electrical Properties of Pb(Zr, Ti)O 3 Thin Film Capacitors on Pt and Ir Electrodes” , Jpn. J. Appl. Phys. Vol.34, pp.5184-5187 (1995)
    K. Aoki, Y. Fukuda, K. Numata, A. Nishimura, ” Electrode Dependences of Switching Endurance Properties of Lead-Zirconate-Titanate Thin-Film Capacitors”, Jpn. J. Appl. Phys. Vol.35, pp.2210-2215 (1996).
    T. Nakamura, K. Nakao, A. Kamisawa, and H. Takasu, “Electrical properties of Pb(Zr, Ti)O3 thin films capacitors on Pt and Ir electrodes”, Jpn. J. Appl. Phys., Part 1, Vol.34, pp.5184 (1995).
    T. Tamura, K. Matsuura, H. Ashida, K. Kondo, and S. Otani, “ Hysteresis variations of (Pb,La)(Zr,Ti)O3 capacitors baked in a hydrogen atmosphere”, Appl. Phys. Lett., Vol.74, No.22, pp.3395 (1999).
    T. Nakamura, Y. Nakao, A. Kamisawa, and H. Takasu, “Preparation of Pb(Zr, Ti)O3 thin films on electrodes including IrO2”, Appl. Phys. Lett., Vol.65, pp.1522 (1994).
    B. R. Chalamala and Robert H. Reuss, “Field emission characteristics of iridium oxide tips”, J. Appl. Phys., Vol.91, No.9, pp.6141 (2002).
    B. R. Chalamala, Y. Wei, Robert H.Reuss, S. Aggarwal, S. R. Perusse, B. E. Gnade, R. Ramesh, “Stability and chemical composition of thermally grown iridium-oxide thin films”, J. Vac. Sci. Technol. B, Vol.18, pp.1919 (2000).
    R. S.Chen, Y. S. Huang, Y. M. Liang, C. S. Hsieh, D. S. Tsai., and K. K. Tiong, “Field emission from vertically aligned conductive IrO2 nanorods”, Appl. Phys. Lett. Vol.84, pp.1552-1554 (2004)
    JCPDS card, Iridium dioxide, no. 43-1019
    J. H. Xu, T. Jarlborg, A.J.Freeman, "Self-consistent band structure of the rutile dioxides NbO2, RuO2 and IrO2", Phys. Rev. B, Vol.40, pp.7939-7947 (1989).
    Ying- Sheng Huang, and Peir- Cheng Liau, "Growth and Characterization of IrO2 Single Crystals" Chinese J. Phys. Vol. 25, NO. 1, pp.232-242 (1987)
    Y.S. Huang,,H.L. Park, F.H. Pollak, "Growth and characterisation of RuO2 single crystals", Materials Research Bulletin, Vol.17, no.10, pp.1305-1312 (1982)
    V. E. Henrich and P. A. Cox, The surface science of metal oxides, Cambridge University Press, Cambridge,(1994)
    Ulrike Diebold,"The surface science of titanium dioxide", Surface Science Reports, 48, pp.53-229 (2003)
    B. Poumellec, P. J. Durham, and G. Y. Guo, "Electronic structure and x- ray absorption spectrum of rutile TiO2", J. Phys.: Condens. Matter., Vol.3, pp.8195, (1991).
    H.Over, A.P. Seitsonen, E. Lundgren, M. Schmid, P. Varga , ”Experimental and simulated STM images of stoichiometric and partially reduced RuO2(110) surfaces including adsorbates”,Surface Science, Vol.515,pp.143–156 (2002)
    M. Knapp, A.P. Seitsonen, Y.D. Kim and H. Over, “Catalytic activity of the RuO2(100) surface in the oxidation of CO”, J. Phys. Chem.B, Vol.108, 14392-14397(2004)
    H. Over, Y.D. Kim, A.P. Seitsonen, S. Wendt, E. Lundgren, M. Schmid, P. Varga, A. Morgante and G. Ertl , “Atomic scale structure and catalytic reactivity of the RuO2(110) surface”, Science Vol.287, pp.1474-1476 (2000)
    H. Over, A.P. Seitsonen, E. Lundgren, M. Schmid and P. Varga, “Direct imaging of catalytically important processes in the oxidation of CO over RuO2(110)”, J. Am. Chem. Soc. 123 11807 (2001)
    S.B.Basame,D.Habel-Rodriguez,D.J.Keller,"Mmorphology and surface reconstruction on RuO2 single crystals", Applied Surface Science,183, pp.62-67(2001)
    T.E. Lister , Y. Chu , W. Cullen, H. You , R.M. Yonco, J.F. Mitchell, Z. Nagy,“ Electrochemical and X-ray scattering study of well defined RuO2 single crystal surfaces” Journal of Electroanalytical Chemistry 524–525, 201–218 (2002)
    S. Schwegmann, A.P. Seitsonen, V. De Renzi, H. Dietrich, H. Bludau, M. Gierer, H. Over, K. Jacobi, M. Scheffler, and G. Ertl, “Oxygen adsorption on the Ru(1010) surface: Anomalous coverage dependence “, Phys. Rev. B 57, pp.15487-15495 (1998)
    A. P. Seitsonen, Y.D. Kim, M. Knapp, S. Wendt and H. Over , “CO adsorption on the stoichiometric and the reduced RuO2(110) surface: Energetics and structure”,Phys. Rev. B, Vol.65, pp.035413-035421 (2002)
    U. Diebold and J. F. Anderson, ”Evidence for the Tunneling Site on Transition-Metal Oxides: TiO2(110)”, Phy. Rev. Lett. Vol.77, pp.1322-1325 (1996)
    AFM原理說明參考NTMDT網站, ”http://www.ntmdt.ru/”
    林明志,”C60/Cu(111)中磊晶方向的旋轉與基板重構之研究”, 天主教輔仁大學物理學研究所碩士論文,p.15, 圖12 (2002)
    邱元浩,”鍺量子點在矽(100)之形貌演變”, 天主教輔仁大學物理學研究所碩士論文,圖2-12 (2002)
    (101)晶面,也可看作(01 ),因為若將金紅石結構的座標對ab平面反轉,再對a軸轉90∘即變成這樣的座標。在X光單晶繞射儀分析中,作出了(01 )的結果。
    Reui-San Chen, Ying-Sheng Huang, Dah-Shyang Tsai, Surajit Chattopadhyay, Chien-Ting Wu, Zon-Huang Lan, and Kuei-Hsien Chen, "Growth of Well Aligned IrO2 Nanotubes on LiTaO3(012) Substrate", Chem. Mater., Vol.16, pp.2457-2462(2004)
    Y. D. Kim, S. Schwegmann, A. P. Seitsonen, and H. Over,
    ” Epitaxial Growth of RuO2(100) on Ru(101h0): Surface Structure and Other Properties”, J. phys. Chem. B,Vol.105, pp.2205-2211(2001)
    M. Ramamoorthy, R. D. King-Smith, and D. Vanderbilt,”Defects on TiO2 (110) surface”, Phys. Rev. B 49, pp.7709-7715 (1994);
    S. Fischer, A. W. Munz, K.-D. Schierbaum , and W. Göpel,” The geometric structure of intrinsic defects at TiO2(110)surfaces: an STM study“, Surf. Sci. 337, 17 (1995).
    K.I. Fukui, H. Onishi, and Y.Iwasawa, "Atom-Resolved Image of the TiO2(110) Surface by Noncontact Atomic Force Microscopy",Phys.Rev.Lett., Vol79, pp.4202-4205 (1997)
    S.Y.Cha and H.C.Lee,"Deoxidization of Iridium oxide thin film", Jpn. J.Appl.phys. Vol.38, pp.L1128-L1130 (1999)

    QR CODE