簡易檢索 / 詳目顯示

研究生: 陳湘旻
Shiang-Min Chen
論文名稱: 基於室內攝影機監控環境之人員追蹤系統
A Human Tracking System for Indoor Camera Surveillance Environments
指導教授: 郭重顯
Chung-Hsien Kuo
口試委員: 吳世琳
Shih-lin Wu
蘇國和
Kuo-Ho Su
梁書豪
Shu-Hao Liang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 53
中文關鍵詞: 深度學習人員追蹤定位人員活動辨識
外文關鍵詞: deep learning, human localization and tracking, human activity recognition
相關次數: 點閱:217下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一基於室內攝影機監控環境之人員追蹤系統,以進行人員軌跡及
    活動監控。本系統可以分為三個部分:影像深度學習、人員定位和人員活動辨識。
    影像深度學習部分係透過 YOLO(You Only Look Once)v3 進行人員影像樣本
    之訓練學習,並進行偵測應用。其次,影像中所偵測到之人員邊界框(Bounding
    Box),會藉由攝影機之高度與姿態計算出人員之平面位置和坐標。此外,藉由人
    員邊界框之移動量與長寬比例回歸分析進行分析,以判別人員在室內之活動;如
    站立、行走、坐下等。本系統於實驗室中架設兩台攝影機,並把計算出之人員位
    置存放於資料庫,透過兩台攝影機之坐標整合,即可達成兩台攝影機人員追蹤資
    訊之整合。最後,本研究以一整合畫面來顯示整場域之人員定位和追蹤系統。


    This thesis presents a human tracking system for indoor camera surveillance environments, which is used for the monitoring of human trajectory and activities. The proposed system is composed of three parts: deep learning human detection from surveillance cameras, human localization and human activity recognition. The surveillance camera images were processed in terms of YOLO(You Only Look Once)
    v3 deep learning model to detect the human. The detected human areas in the image were identified as bounding boxes. The bounding boxes were further utilized with the camera spatial information, including height and pan and tilt angles, to obtain the human position relative to the camera floor coordinate system. Meanwhile, the variation of a specific bounding box of two adjacent image frames and the regression analysis of the height/ width ratio of a bounding box in an image were used to recognize the human activities of standing, walking and sitting. In this work, two surveillance cameras were deployed in our laboratory. The detected human locations of each camera were all recorded in a database. By registering the coordinates of two cameras, a global human tracking system cross different cameras can be achieved. Finally, an integrated graphical user interface was implemented to demonstrate the operation of the proposed human localization and tracking system.

    指導教授推薦書 I 口試委員會審定書 II 誌謝 III 摘要 IV Abstract V 目錄 VI 圖目錄 VIII 表目錄 X 第1章 緒論 1 1.1 研究背景動機 1 1.2 研究目的 2 1.3 論文架構 3 1.4 文獻回顧 4 1.4.1 軌跡追蹤之相關研究 4 1.4.2 姿態辨識相關研究 6 1.4.3 相機校正相關研究 8 第2章 系統架構 11 2.1 系統流程 11 2.2 影像平台佈局 12 2.2.1 影像感測器 12 2.2.2 攝影機佈局 13 2.3 介面顯示 14 第3章 人員偵測與關聯式資料庫之架構 15 3.1  You Only Look Once神經網路 15 3.2  關聯式資料庫 19 3.3 人員追蹤系統之實體關係模型設計 22 第4章 人員行為軌跡追蹤系統 24 4.1 人員定位 24 4.2 人員身高之曲線回歸 27 4.3 人員追蹤 28 4.3.1 顏色特徵辨識 28 4.3.2 多攝影機切換 29 第5章 實驗結果 31 5.1 目標定位分析 31 5.2 行為姿態辨識結果測試 33 5.3 顏色特徵辨識測試 35 第6章 結論與未來研究方向 37 6.1 結論 37 6.2 未來研究方向 37 參考文獻 38

    [1] K. Yoon, Y. Song, and M. Jeon, “Multiple hypothesis tracking algorithm for multi-target multi-camera tracking with disjoint views,” IET Image Processing, vol. 12, no. 7, pp. 1175–1184, 2018.
    [2] M. Byeon, S. Yun, Y. Ro, D. Jo, K. Kim, and J. Y. Choi, “Real-time scheme for 3-dimensional localizing and tracking of people in multiple camera settings,” International Conference on Control, Automation and Systems (ICCAS), pp. 239–244, 2017.
    [3] Y. G. Lee, Z. Tang, and J. N. Hwang, “Online-Learning-Based Human Tracking Across Non-Overlapping Cameras,” IEEE Transactions on Circuits and Systems for Video Technology, pp. 1–1, 2017.
    [4] A. T. Y. Chen, J. Fan, M. B. Abhari, and K. I. K. Wang, “A computationally efficient pipeline for camera-based indoor person tracking,” International Conference on Image and Vision Computing New Zealand (IVCNZ), pp. 1–6, 2017.
    [5] K. Kim, B. Heo, M. Byeon, and J. Y. Choi, “Deep learning architecture for pedestrian 3-D localization and tracking using multiple cameras,” IEEE International Conference on Image Processing (ICIP), pp. 1147–1151, 2017.
    [6] B. Bozorgtabar and R. Goecke, “MSMCT: Multi-State Multi-Camera Tracker,” IEEE Transactions on Circuits and Systems for Video Technology, pp. 1–1, 2017.
    [7] Y. Waizumi, M. Omachi, and K. Tanaka, “On-Demand Color Calibration for Pedestrian Tracking in Nonoverlapping Fields of View,” IEEE Internet of Things Journal, vol. 4, no. 2, pp. 320–329, 2017.
    [8] X. Luo, F. Wang, and M. Luo, “Collaborative target tracking in lopor with multi-camera,” Optik - International Journal for Light and Electron Optics, vol. 127, no. 23, pp. 11588–11598, 2016.
    [9] H. Choi and M. Jeon, “Data association for non-overlapping multi-camera multi-object tracking based on similarity function,” IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), pp. 1–4, 2016.
    [10] F. Fleuret, J. Berclaz, R. Lengagne, and P. Fua, “Multicamera People Tracking with a Probabilistic Occupancy Map,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 2, pp. 267–282, 2008.
    [11] S. C. Agrawal, R. K. Tripathi, and A. S. Jalal, “Human-fall detection from an indoor video surveillance,” International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1–5, 2017.
    [12] M. Babiker, O. O. Khalifa, K. K. Htike, A. Hassan, and M. Zaharadeen, “Automated daily human activity recognition for video surveillance using neural network,” IEEE 4th International Conference on Smart Instrumentation, Measurement and Application (ICSIMA), pp. 1–5, 2017.
    [13] M. I. Zul, I. Muslim, and L. Hakim, “Human Activity Recognition by Using Nearest Neighbor Algorithm from Digital Image,” International Conference on Soft Computing, Intelligent System and Information Technology (ICSIIT), pp. 58–61, 2017.
    [14] M. Z. Uddin, W. Khaksar, and J. Torresen, “Human activity recognition using robust spatiotemporal features and convolutional neural network,” IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 144–149, 2017.
    [15] H. Samir, H. Abdelmunim, and G. M. Aly, “Human activity recognition using shape moments and normalized fourier descriptors,” International Conference on Computer Engineering and Systems (ICCES), pp. 359–364, 2017.
    [16] N. Kase, M. Babaee, and G. Rigoll, “Multi-view human activity recognition using motion frequency,” IEEE International Conference on Image Processing (ICIP), pp. 3963–3967, 2017.
    [17] M. Papakostas, T. Giannakopoulos, F. Makedon, and V. Karkaletsis, “Short-Term Recognition of Human Activities Using Convolutional Neural Networks,” International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), pp. 302–307, 2016.
    [18] M. Z. Uddin, J. Torresen, and T. Jabid, “Human Activity Recognition using depth body part histograms and Hidden Markov Models,” International Conference on Innovations in Science, Engineering and Technology (ICISET), pp. 1–4, 2016.
    [19] V. Ramakrishna, T. Kanade, and Y. Sheikh, “Tracking Human Pose by Tracking Symmetric Parts,” IEEE Conference on Computer Vision and Pattern Recognition, pp. 3728–3735, 2013.
    [20] M. Saito, K. Kitaguchi, H. Nishida and M. Hashimoto, “Human behavior recognition using regression models,” ICCAS-SICE, pp. 4647–4650, 2009.
    [21] K. Fathian, J. P. Ramirez-Paredes, E. A. Doucette, J. W. Curtis and N. R. Gans, “QuEst: A Quaternion-Based Approach for Camera Motion Estimation From Minimal Feature Points”, IEEE Robotics and Automation Letters, pp. 857-864, 2018.
    [22] S. Sengupta, T. Amir, M. Galun, T. Goldstein, D. W. Jacobs, A. Singer and R. Basri, “A New Rank Constraint on Multi-view Fundamental Matrices, and Its Application to Camera Location Recovery”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2413-2421, 2017.
    [23] G. Manzo, F. Serratosa and M. Vento, “Online human assisted and cooperative pose estimation of 2D cameras”, Expert Systems with Applications, pp. 258-268, 2016.
    [24] I. Nurutdinova and A. Fitzgibbon, “Towards Pointless Structure from Motion: 3D Reconstruction and Camera Parameters from General 3D Curves”, IEEE International Conference on Computer Vision (ICCV), pp. 2363-2371, 2015.
    [25] F. Jin and X. Wang, “An autonomous camera calibration system based on the theory of minimum convex hull”, Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC), 2015, pp. 857-860, 2015.
    [26] F. Pirahansiah, S. N. H. S. Abdullah and S. Sahran, “Camera calibration for multi-modal robot vision based on image quality assessment”, 10th Asian Control Conference (ASCC), pp. 1-6, 2015.
    [27] L. Song, W. Wu, J. Guo and X. Li, “Survey on camera calibration technique”, 5th International Conference on Intelligent Human-Machine Systems and Cybernetics, vol. 2, pp. 389-392, 2013.
    [28] A. Fetić, D. Jurić and D. Osmanković, “The procedure of a camera calibration using camera calibration toolbox for MATLAB”, Proceedings of the 35th International Convention MIPRO, 2012, pp. 1752-1757 , 2012.
    [29] A. Kapadia, D. Braganza, D. M. Dawson and M. L. McIntyre, “Adaptive camera calibration with measurable position of fixed features”, American Control Conference, pp. 3869-3874, 2008.
    [30] http://www.dlinktw.com.tw/home/product?id=83
    [31] https://zh.wikipedia.org/wiki/Qt
    [32] https://kb.site5.com/databases/phpmyadmin/phpmyadmin-running-sql-
    queries-on-a-database/
    [33] https://www.cnblogs.com/makefile/p/YOLOv3.html
    [34] https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b

    無法下載圖示 全文公開日期 2023/08/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE