簡易檢索 / 詳目顯示

研究生: 黃仁暐
Jen-wei Huang
論文名稱: 純水和乙醇水溶液液滴撞擊parafilm平板捕捉氣泡行為研究
A Study of Air Bubble Entrapment for Water and Ethanol Aqueous Solution Impinging on Parafilm Surface
指導教授: 林析右
Shi-yow Lin
口試委員: 王孟菊
Meng-Jiy Wang
陳崇賢
Chorng-Shyan Chern
謝之真
Chih-Chen Hsieh
張光欽
Kung-Chin Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 50
中文關鍵詞: 液滴撞擊氣泡捕捉
外文關鍵詞: droplet impingement, bubble entrapment
相關次數: 點閱:191下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究觀察液滴撞擊固體平板後氣泡捕捉的行為,與液滴撞擊固體平板後的液滴形態學。藉由控制液滴大小(D0)與撞擊速度(Vi),我們對純水液滴暨乙醇水溶液液滴撞擊parafilm表面產生的氣泡捕捉行為進行一系列的探討。利用高速攝影機從45°俯視觀察液滴之形態變化,可觀察到氣泡捕捉之操作條件僅限於在Vi - D0圖上的一個半封閉的區間。可捕捉到氣泡之撞擊速度的上限和下限,因著D0之增加而下降。被捕捉的氣泡在狀態穩定後,在parafilm表面上形成一近似半圓形氣泡。當撞擊速度接近上下限時,氣泡的尺寸會變小。另外,在純水-parafilm系統中,我們觀察到有四種氣泡形成機制。以5%及20%乙醇水溶液液滴撞擊parafilm表面,觀察到5%乙醇液滴在Vi - D0圖上具有一個封閉的氣泡捕捉區間,且皆以同一種方式捕捉氣泡;而20%乙醇液滴則無氣泡捕捉的行為。
    分別以純水、乙醇和甘油水溶液液滴撞擊parafilm表面,在雷諾數與韋伯數一致時,三種不同液滴在擴展階段時,具有幾乎相同的液滴形態變化。另外,本研究亦以純水撞擊不同表面親疏水性(表面粗糙度)之石墨平板,觀察其表面親疏水性對液滴潤濕行為的差異。其中,當純水液滴撞擊接觸角約90°的石墨平板時,液滴向外擴展達到最大潤濕直徑後,接觸點即幾乎不再移動。


    This study is observing the behavior of air bubble entrapment and the morphology of drop impingement. Controlling the droplet impact velocity(Vi) and drop size(D0), pure water droplets and C2H5OH(aq) droplets impacting on parafilm surface were systematically investigated. By using a high-speed video camera system from 45 degree top view, successful observation of the bubble entrapment occurred in a half closed region on Vi - D0 diagram. The upper and lower boundaries of impact velocities showed a tendency of decreasing as droplet diameter increases. Entrapped air formed a hemispherical bubble steadily settling on parafilm surface. In addition, four mechanisms were proposed in water on parafilm system. Change the solution to mixed water and ethanol. Make an observation of 5% C2H5OH (aq) and 20% C2H5OH (aq) impacting on parafilm surface. We observed a closed region of bubble entrapment for 5% C2H5OH (aq) on Vi - D0 diagram, and all trapped air bubble in the same way. However, there was no bubble entrapment for 20% C2H5OH (aq).
    By individually using water, C2H5OH(aq), and glycerol aqueous solution impacting on parafilm surface, with consistent of Reynold number and Weber number, we observed that the three types of drop had similar morphology at spreading stage. Using graphite with different hydrophobicity as plane for pure water drop impingement, we observed the wetting behavior due to surface hydrophobicity difference. When the drop impacted on the graphite surface with contact angle around 90 degrees, we discovered that the contact point of drop do not change considerably when the drop spread outward to the maximum wetting diameter.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 V 圖目錄 VI 符號表 VIII 第一章 前言 1 第二章 文獻回顧 3 第三章 實驗設備 3.1 主要儀器設備 10 3.2 其它儀器設備 12 3.3 儀器校正 12 3.4 實驗藥品 13 3.5 實驗條件選定 13 第四章 實驗結果 4.1液滴撞擊疏水性材質後捕捉氣泡行為探討 15 4.1.1純水液滴撞擊parafilm之氣泡捕捉行為 15 4.1.2純水液滴撞擊parafilm之氣泡捕捉機制探討 21 4.1.3乙醇水溶液液滴撞擊parafilm之氣泡捕捉行為 27 4.2純水液滴撞擊平板後之行為探討 31 4.2.1液滴撞擊平板後之形態學探討 31 4.2.2純水液滴撞擊石墨平板之行為探討 33 第五章 結論 39 參考文獻 40

    1.G.E. Cossali, A. Coghe, M. Marengo, “The impact of a single drop on a wetted solid surface,” Exp. Fluids, 22, 463 (1996)
    2.R. Rioboo, M. Marengo, C. Tropea, “Time evolution of liquid drop impact onto solid, dry surfaces,” Exp. Fluids, 33, 112 (2002)
    3.M. Pasandideh-Fard, Y. M. Qiao, S. Chandra, J. Mostaghimi, “Capillary effects during droplet impact on a solid surface,” Phys. Fluids, 8, 650 (1996)
    4.K.P. Gatne, M. A. Jog, R. M. Manglik, “Surfactant-induced modification of low weber number droplet impact dynamics,” Langmuir, 25, 8122 (2009)
    5.M. Aytouna, D. Bartolo, G. Wegdam, D. Bonn, S. Rafai, “Impact dynamics of surfactant laden drops: Dynamic surface tension effects,” Exp. Fluids, 48, 49 (2010)
    6.J. J. Cooper-White, R.C. Crooks, K. Chockalingam, D.V. Boger, “Dynamics of polymer - surfactant complexes: Elongational properties and drop impact behavior,” Ind. Eng. Chem. Res., 41, 6443 (2002)
    7.S.D. Aziz, S. Chandra, “Impact, recoil and splashing of molten metal droplets,” Int. J. Heat Mass Tran., 43, 2841 (2000)
    8.D.A. Gorham, “Anomalous behaviour of high velocity oblique liquid impact,” Wear, 41, 2 (1977)
    9.D. Bartolo, F. Bouamrirene, É. Verneuil, A. Buguin, P. Silberzan, S. Moulinet, “Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces,” Europhys. Lett., 74, 299 (2006)
    10.B.S. Kang, D.H. Lee, “ On the dynamic behavior of a liquid droplet impacting upon an inclined heated surface,” Exp. Fluids., 29, 380 (2000)
    11.R. Rioboo, M. Voué, A. Vaillant, J. De Coninck, “ Drop impact on porous superhydrophobic polymer surfaces,”Langmuir, 24, 14074 (2008)
    12.R.E. Pepper, L. Courbin, “Splashing on elastic membranes: The importance of early-time dynamics,” Phys. Fluids, 20, 8 (2008)
    13.R. Rioboo, M. Voué, H. Adão, J. Conti, A. Vaillant, D. Eveno, D. Coninck, “Drop impact on soft surfaces: Beyond the static contact angles,” Langmuir, 26, 4873 (2010)
    14.R. Rioboo, C. Tropea, “Outcomes from a drop impact on solid surfaces,” Atomization Spray, 11, 155 (2001)
    15.T. Mao, D.C.S. Kuhn, H. Tran, “Spread and rebound of liquid droplets upon impact on flat surfaces,” AIChE J., 43, 2169 (1997)
    16.F.T. Dodge, “The spreading of liquid droplets on solid surfaces,” J. Colloid Interface Sci., 121, 154 (1988)
    17.H. Park, W.W. Carr, J. Zhu, J.F. Morris, “Single drop impaction on a solid surface,” AIChE J., 49, 2461 (2003)
    18.S. Vafaeia, M.Z. Podowskia, “Analysis of the relationship between liquid droplet size and contact angle,” Adv. Colloid Interface Sci., 113, 133 (2005)
    19.C. Ukiwe, D.Y. Kwok, “On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces,” Langmuir, 21, 666 (2005)
    20.H.C. Pumphrey, P.A. Elmore, “Entrainment of bubbles by drop impacts,” J. Fluid Mech., 220, 539 (1990)
    21.P.A. Elmore, G.L. Chahine, H.N. Oguz, “Cavity and flow measurements of reproducible bubble entrainment following drop impacts,” Exp. Fluids, 31, 664 (2001)
    22.Y. Renardy, S. Popinet, L. Duchemin, M. Renardy, S. Zaleski, C. Josserand, M.-A. Drumright-Clarke, D. Richard, C. Clanet, D. Quere., “Pyramidal and toroidal water drops after impact on a solid surface,” J. Fluid Mech., 484, 69 (2003)
    23.S. Chandra, C.T. Avedisian, “Droplet impact on a porous surface,” Proc.: Math. Phys. Sci., 432, 13 (1991)
    24.S.T. Thoroddsen, J. Sakakibara, “Evolution of the fingering pattern of an impacting drop,” Phys. Fluids, 10, 1359 (1998)
    25.D.B. van Dam, C.L. Clerc, “Experimental study of the impact of an ink-jet printed droplet on a solid substrate,” Phys. Fluids, 16, 3403 (2004)
    26.S.T. Thoroddsen, T.G. Etoh, K. Takehara, “The air bubble entrapped under a drop impacting on a solid surface,” J. Fluid Mech., 545, 203 (2005)
    27.J.J. Huang, C. Shu, Y.T. Chew, “Lattice Boltzmann study of bubble entrapment during droplet impact,” Int. J. Numer. Meth. Fluids, 65, 655 (2011)
    28.R. Rioboo, M. Marengo, C. Tropea, “Time evolution of liquid drop impact onto solid, dry surfaces,” Exp. Fluids , 33, 112 (2002)
    29.D. Bartolo, C. Josserand, D. Bonn, “Singular jets and bubbles in drop impact,” Phys. Rev. Lett., 96, 124501 (2006)
    30.L. Chen, Z. Xiao, C.H. Chan, Y. Lee, Z. Li, “A comparative study of droplet impact dynamics on a dual-scaled superhydrophobic surface and lotus leaf,” Appl. Surf. Sci., 257, 8857 (2011)
    31.P. Tsai, S. Pacheco, C. Pirat, L. Lefferts, D. Lohse, “Drop impact upon micro- and nanostructured superhydrophobic surfaces,” Langmuir, 25, 12293 (2009)
    32.M.J. Wang, Y.L. Hung, S.Y. Lin, “The observation of air bubble entrapment for water droplets impinging on parafilm surface,” J. Taiwan Inst. Chem. Eng., 43, 517 (2012)
    33.洪逸霖,「液滴撞擊平板行為研究-純水液滴在玻璃、paraffin、與芋頭葉面上」,博士論文,國立台灣科技大學,台北 (2011)
    34.蕭慕柔,「電解剝離法之石墨表面性質探討」,碩士論文,國立中央大學,桃園 (2012)
    35.S.J. Hong, Y.F. Li, M.J. Hsiao, Y.J. Sheng, and H.K. Tsao, “ Anomalous wetting on a superhydrophobic graphite surface,” Appl. Phys. Lett., 100, 121601 (2012)

    QR CODE