簡易檢索 / 詳目顯示

研究生: 黃恩惠
Yosephine - Margaretha
論文名稱: 界面活性劑溶液撞擊parafilm平板之行為研究
Drop Impingement of Surfactant Solution onto Parafilm
指導教授: 林析右
Shi-Yow Lin
口試委員: 王孟菊
Meng-Ji Wang
陳立仁
Li-Jen Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 69
中文關鍵詞: 液滴撞擊界面活性劑parafilm
外文關鍵詞: Droplet impact, surfactant solution, parafilm
相關次數: 點閱:209下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 液滴撞擊固體平板後之潤濕行為,一直是被學界所討論的課題,廣泛運用在不同之領域;例如噴墨印表機的墨水噴塗於紙上,農藥噴灑於葉面上,用於面板製造的噴霧式蝕刻,高分子3D列印噴墨等。因液滴撞擊平板後的液滴變化情形甚為快速,故需仰賴高速攝影機觀察其變化行為。本研究利用每秒拍攝張數達6770張的高速攝影機拍攝液滴撞擊時側視與俯視影像。
    研究目的主要以添加了不同的界面活性劑的溶液撞擊parafilm以觀察其濕潤行為,本實驗選用三種不同的界面活性劑Triton X-100 (非離子型), SDS (陰離子型), and AOT+10 mM salt (陰離子型)。並進行低濃度(低於臨界微胞濃度)與高濃度(兩倍以上之臨界微胞濃度)的液滴撞擊parafilm實驗,同時也研究不同液滴撞擊高度及表面濃度對於液滴撞擊的濕潤行為影響。
    實驗數據顯示,在水中加入界面活性劑明顯影響了液滴撞擊時的收縮和擴展的行為,界面活性劑性質也是一個非常重要的因素。界面活性劑溶液撞擊在parafilm上時,數據顯示液滴中的界面活性劑濃度會導致不同的擴張因子(spreading factor)和震盪,
    擴張(spread)和回縮(recoil)的行為也和液滴的動態表面張力有所關聯,當界面活性劑濃度越高,液滴撞擊時的擴展直徑(spreading diameter)越大且回縮(recoil)情況也較差,濃度高於CMC(臨界微胞濃度)的液滴 在這部份的行為表現相較於低濃度的液滴來的更為明顯。


    The wetting behavior of surfactant solution drops impinging onto PARAFILMR surface was studied experimentally using high-speed photographic technique, which can monitor drop morphology simultaneous from the top and side views. The spreading and retraction behaviors of the impacting drops at PARAFILMR surfaces were studied. Three different surfactants were used: Triton X-100 (nonionic), SDS (anionic), and AOT+10 mM salt (anionic). Measurement was performed for SDS and Triton X-100 solution drops at low (below the critical micelle concentration) and high (double concentration of CMC) concentrations. Experiments for the three surfactants were performed at same equilibrium surface tension. These experiments were performed to study the wetting behavior of the surfactant solution drops. The effects of impact height and surfactant concentration were also studied at several different impact heights and surfactant concentrations. The experimental data showed that the addition of surfactant in water drops affects significantly the spreading and retraction behavior. The properties of surfactant molecules play also a very important role. Impact of surfactant solution drop on hydrophobic substrates can result in dramatic recoils and rebound. For aqueous solutions with surface active agents, the result showed that drop of surfactant solution with a higher diffusion rate resulted in a higher spreading factor and a weaker oscillation. The spreading and recoil behavior can be correlated to the dynamic surface tension of the surfactant solutions. Drop with high surfactant concentration also resulted in a larger spreading diameter and a lower retraction. For drops at concentration above CMC, the spreading show a distinct behavior compare to those at low concentration

    Recommendation letter…..……………………………………………………………………i Approval letter………………………………………………………………………………..ii Abstract…..…………………………………………………………………………………..iii Acknowledgements.………………………………………………………………………….iv Contents…..…………………………………………………………………………………...v List of figures.....……………………………………………………………………………..vi List of tables….……………………………………..………………………………………..ix CHAPTER 1 INTRODUCTION 1 1.1 Research Background 1 1.2 Problem Definition 1 1.3 Research objective and scopes 2 CHAPTER 2 LITERATURE REVIEW 3 2.1 Droplet Impact of Surfactant Solution 3 2.2 Impact Mechanism on the Surface 5 2.3 Contact angle and parameters characterizing the flow 6 2.4 Surfactant 8 2.5 Surface Tension and Surface Energy 10 2.6 Energy Conservation During Impact on Surface 11 2.7 Surface tension measurement using pendant drop digitization 11 CHAPTER 3 EXPERIMENTAL TECHNIQUES 14 3.1 Apparatus 14 3.2 Materials 14 3.3 Experimental procedure 15 3.4 Calibration of CCD camera 16 3.5 Experimental design 18 3.6 Drop size measurement 18 3.7 Initial surface tension before impact 19 3.8 The Plate and the Impact Velocity 22 3.9 Data analysis: wetting diameter, contact angle, and impact height 23 CHAPTER 4 RESULTS AND DISCUSSION 26 4.1 Experimental Results 26 4.2 The Effect of Concentration 36 4.3 The Effect of the Impact Height 48 4.4 The Effect of Different Type of Surfactant 54 CHAPTER 5 CONCLUSION 57 REFERENCE.………………………………………………………………………………..58

    1. Rein, M., Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dynamics Research, 1993. 12: p. 61-93.
    2. Pasandideh-Fard, M., et al., Capillary effects during droplet impact on a solid surface. Phys. Fluids, 1995. 8(3): p. 650-670.
    3. Rioboo, R., M. Marengo, and C. Tropea, Time evolution of liquid drop impact onto solid, dry surfaces. Experiments in Fluids 3, 2002. 33: p. 112-124.
    4. Center, N.F.S.T., A Simplified Guide to Bloodstain Pattern Analysis, 2009.
    5. Ahn, S., et al., Effects of hydrophobicity on splash erosion of model soil particles by a single water drop impact. Earth Surface Processes and Landforms, 2013. 38(11): p. 1225-1233.
    6. Yarin, A.L., Drop impact dynamics: Splashing, Spreading, Receding, Bouncing. Annu. Rev. Fluid Mech, 2006. 38: p. 159-192.
    7. Wang, M.-J., et al., Dynamic behaviors of droplet impact and spreading: A universal relationship study of dimensionless wetting diameter and droplet height. Experimental Thermal and Fluid Science, 2009. 33: p. 1112-1118.
    8. Fukai, J., et al., Wetting effects on the spreading of a liquid droplet colliding with a flat surface: Experiment and modeling. Physics of Fluids, 1995. 7(2): p. 236.
    9. Mourougou-Candoni, N., et al., Influence of Dynamic Surface Tension on the Spreading of Surfactant Solution Droplets Impacting onto a Low-Surface-Energy Solid Substrate. Journal of Colloid and Interface Science 1997. 192: p. 129-141.
    10. Zhang, X. and O.A. Basaran, Dynamic Surface Tension Effects in Impact of a Drop with a Solid Surface. Journal of Colloid and Interface Science 1997. 187: p. 166-178.
    11. Crooks, R., J. Cooper-Whitez, and D.V. Boger, The role ofdynamic surface tension and elasticity on the dynamics ofdrop impact. Chemical Engineering Science, 2001. 56: p. 5575-5592.
    12. Range, K. and F. Feuillebois, Influence of Surface Roughness on Liquid Drop Impact. Journal of Colloid and Interface Science, 1998. 203: p. 16-30.
    13. Bartolo, D., C. Josserand, and D. Bonn, Singular Jets and Bubbles in Drop Impact. Physical Review Letters, 2006. 96: p. 124501.
    14. Hung, Y.-L., et al., A study on the impact velocity and drop size for the occurrence of entrapped air bubbles – Water on parafilm. Experimental Thermal and Fluid Science, 2013. 48: p. 102-109.
    15. Kinnel, P.I.A., Raindrop impact induced erosion processes and prediction: a review. Hydrological Processes, 2005. 19(14): p. 2815-2844.
    16. Gooden, D., Responsible Pesticide Application: Delivery, Deposition, Uptake, Regulation and Testing, 2010, Nuffield Australia.
    17. Aytouna, M., D. Bartolo, and W.E-Gerard, Impact dynamics of surfactant laden drops: dynamic surface tension effects. Exp. Fluids, 2010. 48: p. 49-57.
    18. Chandra, S. and C.T. Avedisian, On the Collision of a Droplet with a Solid Surface. Proc. R. Soc. Lond. A, 1991. 432: p. 13-42.
    19. Gatne, K.P., M.A. Jog, and R.M. Manglik, Surfactant-Induced Modification of Low Weber Number Droplet Impact Dynamics. Langmuir, 2009. 25(14): p. 8122-8130.
    20. Cooper-White, J.J., R.C. Crooks, and D.V. Boger, A drop impact study of worm-like viscoelastic surfactant solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002. 210: p. 105-123.
    21. Pittoni, P.G., H.-K. Tsao, and S.-Y. Lin, Water drop impingement on graphite substrates with random dilute defects. Experimental Thermal and Fluid Science 2014. 53: p. 142–146.
    22. Pittoni, P.G., et al., Impingement dynamics of water drops onto four graphite morphologies: From triple line recoil to pinning. Journal of Colloid and Interface Science, 2014. 417: p. 256-263.
    23. Gennes, P.G.d., Wetting: statics and dynamics. Review of Modern Physics, 1985. 57.
    24. Myers, D., Surfaces, Interfaces, and Colloids: Principles and Applications. Vol. Second edition. 1990, New York: John Wiley & Sons, Inc.
    25. Lin, S.-Y., K. McKeigue, and C. Maldarelli, Diffusion-Controlled Surfactant Adsorption Studied by Pendant Drop Digitization. AIChE Journal, 1990. 36(12): p. 1785-1795.
    26. Eastoe, J. and J.S. Dalton, Dynamic surface tension and adsorption mechanisms of surfactants at the air-water interface. Advances in Colloid and Interface Science, 2000. 85: p. 103-144.
    27. Hsu, C.-T., C.-H. Chang, and S.-Y. Lin, A Study of Surfactant Adsorption Kinetics: Effect of Intermolecular Interaction between Adsorbed Molecules. Langmuir, 1999. 15: p. 1952-1959.
    28. Inc., K. Surface Tension. 2014 [cited 2014 13 July]; Available from: http://www.kibron.com/surface-tension.
    29. Laboratory, Adsorption Kinetics of Sodium Dodecyl Sulphate, Triton X-100, and Aerosol OT+10 mM salt.
    1. Rein, M., Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dynamics Research, 1993. 12: p. 61-93.
    2. Pasandideh-Fard, M., et al., Capillary effects during droplet impact on a solid surface. Phys. Fluids, 1995. 8(3): p. 650-670.
    3. Rioboo, R., M. Marengo, and C. Tropea, Time evolution of liquid drop impact onto solid, dry surfaces. Experiments in Fluids 3, 2002. 33: p. 112-124.
    4. Center, N.F.S.T., A Simplified Guide to Bloodstain Pattern Analysis, 2009.
    5. Ahn, S., et al., Effects of hydrophobicity on splash erosion of model soil particles by a single water drop impact. Earth Surface Processes and Landforms, 2013. 38(11): p. 1225-1233.
    6. Yarin, A.L., Drop impact dynamics: Splashing, Spreading, Receding, Bouncing. Annu. Rev. Fluid Mech, 2006. 38: p. 159-192.
    7. Wang, M.-J., et al., Dynamic behaviors of droplet impact and spreading: A universal relationship study of dimensionless wetting diameter and droplet height. Experimental Thermal and Fluid Science, 2009. 33: p. 1112-1118.
    8. Fukai, J., et al., Wetting effects on the spreading of a liquid droplet colliding with a flat surface: Experiment and modeling. Physics of Fluids, 1995. 7(2): p. 236.
    9. Mourougou-Candoni, N., et al., Influence of Dynamic Surface Tension on the Spreading of Surfactant Solution Droplets Impacting onto a Low-Surface-Energy Solid Substrate. Journal of Colloid and Interface Science 1997. 192: p. 129-141.
    10. Zhang, X. and O.A. Basaran, Dynamic Surface Tension Effects in Impact of a Drop with a Solid Surface. Journal of Colloid and Interface Science 1997. 187: p. 166-178.
    11. Crooks, R., J. Cooper-Whitez, and D.V. Boger, The role ofdynamic surface tension and elasticity on the dynamics ofdrop impact. Chemical Engineering Science, 2001. 56: p. 5575-5592.
    12. Range, K. and F. Feuillebois, Influence of Surface Roughness on Liquid Drop Impact. Journal of Colloid and Interface Science, 1998. 203: p. 16-30.
    13. Bartolo, D., C. Josserand, and D. Bonn, Singular Jets and Bubbles in Drop Impact. Physical Review Letters, 2006. 96: p. 124501.
    14. Hung, Y.-L., et al., A study on the impact velocity and drop size for the occurrence of entrapped air bubbles – Water on parafilm. Experimental Thermal and Fluid Science, 2013. 48: p. 102-109.
    15. Kinnel, P.I.A., Raindrop impact induced erosion processes and prediction: a review. Hydrological Processes, 2005. 19(14): p. 2815-2844.
    16. Gooden, D., Responsible Pesticide Application: Delivery, Deposition, Uptake, Regulation and Testing, 2010, Nuffield Australia.
    17. Aytouna, M., D. Bartolo, and W.E-Gerard, Impact dynamics of surfactant laden drops: dynamic surface tension effects. Exp. Fluids, 2010. 48: p. 49-57.
    18. Chandra, S. and C.T. Avedisian, On the Collision of a Droplet with a Solid Surface. Proc. R. Soc. Lond. A, 1991. 432: p. 13-42.
    19. Gatne, K.P., M.A. Jog, and R.M. Manglik, Surfactant-Induced Modification of Low Weber Number Droplet Impact Dynamics. Langmuir, 2009. 25(14): p. 8122-8130.
    20. Cooper-White, J.J., R.C. Crooks, and D.V. Boger, A drop impact study of worm-like viscoelastic surfactant solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002. 210: p. 105-123.
    21. Pittoni, P.G., H.-K. Tsao, and S.-Y. Lin, Water drop impingement on graphite substrates with random dilute defects. Experimental Thermal and Fluid Science 2014. 53: p. 142–146.
    22. Pittoni, P.G., et al., Impingement dynamics of water drops onto four graphite morphologies: From triple line recoil to pinning. Journal of Colloid and Interface Science, 2014. 417: p. 256-263.
    23. Gennes, P.G.d., Wetting: statics and dynamics. Review of Modern Physics, 1985. 57.
    24. Myers, D., Surfaces, Interfaces, and Colloids: Principles and Applications. Vol. Second edition. 1990, New York: John Wiley & Sons, Inc.
    25. Lin, S.-Y., K. McKeigue, and C. Maldarelli, Diffusion-Controlled Surfactant Adsorption Studied by Pendant Drop Digitization. AIChE Journal, 1990. 36(12): p. 1785-1795.
    26. Eastoe, J. and J.S. Dalton, Dynamic surface tension and adsorption mechanisms of surfactants at the air-water interface. Advances in Colloid and Interface Science, 2000. 85: p. 103-144.
    27. Hsu, C.-T., C.-H. Chang, and S.-Y. Lin, A Study of Surfactant Adsorption Kinetics: Effect of Intermolecular Interaction between Adsorbed Molecules. Langmuir, 1999. 15: p. 1952-1959.
    28. Inc., K. Surface Tension. 2014 [cited 2014 13 July]; Available from: http://www.kibron.com/surface-tension.
    29. Laboratory, Adsorption Kinetics of Sodium Dodecyl Sulphate, Triton X-100, and Aerosol OT+10 mM salt.

    QR CODE