簡易檢索 / 詳目顯示

研究生: 曾翊紘
Yi-Hong Zeng
論文名稱: 前進及後退接觸角之研究暨離子型界劑水溶液吸附動力學探討
Advancing/Receding Contact Angles Measurement and The Adsorption Kinetics of Ionic Surfactants
指導教授: 林析右
Shi-Yow Lin
口試委員: 江佳穎
Chia-Ying Chiang
張鑑祥
Chien-Hsiang Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 78
中文關鍵詞: 前進及後退接觸角液滴蒸發吸附動力學表面張力界面活性劑相轉換
外文關鍵詞: Advancing and Receding contact angle, drop evaporation, Adsorption Kinetics, surface tension, surfactant, phase transition.
相關次數: 點閱:269下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之第一部分使用固著液滴影像數位化系統,量測固著液滴於固體平板上蒸發時,固著液滴之動態潤濕行為,進而探討平板之粗糙度及親輸水性對前進和後退接觸角之影響。本研究以砂紙研磨聚甲基丙烯酸甲酯(Poly(methyl methacrylate), PMMA)平板,獲得不同表面粗糙度之PMMA平板,並探討純水固著液滴在固定溫度及濕度下,其動態、前進及後退接觸角於不同粗糙度之PMMA平板上的變化情形。實驗結果顯示,液滴之潤濕行為可分為初始、恆定潤濕直徑(CCR)、恆定接觸角(CCA)及混合四個階段。由恆定接觸角(CCA)階段可得到液滴於PMMA平板上之後退接觸角;然而液滴於較粗糙之PMMA平板上進行蒸發時,並未發現CCA階段。
    以相同實驗方法,觀測固著液滴於不同塗佈層之金表面上的蒸發情形,並探討塗佈層之親疏水性質對前進及後對接觸角的影響。實驗結果顯示,此四種基材之前進及後退接觸角,由大至小的順序為SAM-CH3 > pCBMA > SAM-COOH > pSBMA。
    繼而以注射幫浦透過注射針頭抽取平板上之純水固著液滴,並藉由調整不同的抽取速率,探討純水固著液滴於聚碳酸酯(Polycarbonate, PC)及PMMA平板上,後退接觸角隨液滴體積減少速率之變化。實驗結果顯示,純水液滴於PC及PMMA上之後退接觸角將隨著液滴體積減少速率的增加而減少。
    本研究之第二部分使用懸掛氣泡影像數位化測量儀,量測離子型界劑於水溶液中吸附至氣-液界面所造成的表面張力變化,再以質傳理論模式來探討其吸附動力學。本研究探討之離子行界劑分別為正癸酸與正十二烷基胺(DDA)。
    正癸酸於10 mM HCl水溶液中幾乎是以非離子型界劑的型態存在於水溶液中。本研究測得動態及平衡表面張力後,以非離子型generalized Frumkin模式模擬、探討其吸附行為。
    DDA於0.1 mM NaCl水溶液中,其動態表面張力曲線於71.96及43.86 mN/m處有pleatau現象,推測是DDA單分子層於氣-液界面發生Gas - Liquid Expanded及Liquid Expanded - Liquid Condensed之相轉換行為。


    In the first part of this study, the advancing and receding contact angle were investigated by a sessile drop tensiometer. The dynamic wetting behavior of water drops evaporating from poly(methyl methacrylate) (PMMA) substrates with different roughness was examined. The relaxation of the wetting diameter, volume and the contact angle of a sessile drop was monitored during the evaporation process. For the smoother substrates, four stages were identified during evaporation. The receding contact angle (r) was found in the constant contact angle (CCA) stage. In contrast, for the rougher substrates, the CCA stage was not observed, and the contact line was pinned at its original position during almost the entire lifetime of the drop.
    The effect of hydrophobicity on the advancing (a) and receding contact angle were investigated by four coated surfaces (SAM-CH3, SAM-COOH, pCBMA, pSBMA). It was found that the a and r of water drop on these four samples are following the order: SAM-CH3 > pCBMA > SAM-COOH > pSBMA.
    The deflation rate dependence of receding contact angle of water drops was studied by the suction method onto PMMA and PC surfaces. The relation between the receding contact angle and the deflation rate was experimentally determined, and the receding contact angle was found to decrease with increasing liquid deflation rate.
    In the second part of this work, the dynamic and equilibrium surface tensions (ST) of ionic surfactants decanoic acid and dodecylamine (DDA) in aqueous solutions was measured by using a video-enhanced pendant bubble tensionmeter. The theoretical ST profiles using the nonionic and ionic Frumkin models were compared with the experimental data to study the adsorption mechanism.
    For aqueous decanoic acid in 10 mM HCl solutions, decanoic acid works like a nonionic surfactant. A diffusivity of 6.0510-6 cm2/s was obtained from the best fit between the experimental and theoretical ST curves.
    There exist two pleatau regions at =71.96 and 43.86 mN/m in the ST curves of DDA in 0.1 mM NaCl aqueous solutions at 25°C. The pleataus imply the existence of gas-liquid expended (G-LE) and liquid expended-liquid condensed (LE-LC) phase transition for the adsorbed DDA molecules at air-water interface.

    摘要I AbstractII 誌謝III 目錄IV 圖目錄VI 表目錄IX 第一章、簡介1 1.1潤濕行為介紹1 1.1.1 接觸角1 1.1.2 三相線1 1.2界面介紹2 1.2.1界面活性劑的特性2 1.2.2界面活性劑分類4 1.3研究主題5 第二章、文獻回顧6 2.1 動態接觸角之探討6 2.2 三相線移動速率對前進及後退接觸角之影響7 2.3界劑分子在氣-液界面之吸附行為8 2.4非離子型界劑分子之質傳理論11 2.4.1 Langmuir adsorption model12 2.4.2 Frumkin and generalized Frumkin models13 2.5離子型界劑分子之質傳理論16 2.6 界劑水溶液之表面張力量測18 第三章、表面張力及接觸角量測方法20 3.1 懸掛氣泡影像數位化測量儀20 3.1.1懸掛氣泡法量測界面張力之理論20 3.1.2硬體設備22 3.2 固著液滴影像數位化測量儀24 3.2.1固著液滴影像邊界、接觸角搜尋與理論邊界曲線計算25 3.3其它實驗儀器26 3.4實驗藥品及材料26 3.5 實驗方法28 3.5.1溶液配製28 3.5.2聚碳酸酯(PC)與聚甲基丙烯酸甲酯(PMMA)平板之處理28 3.5.3實驗流程29 第四章、液滴蒸發之行為研究33 4.1 液滴於不同粗糙度之PMMA上蒸發33 4.2 液滴於不同塗佈層之金表面上蒸發36 第五章、液滴體積變化速率對後退接觸角之影響探討39 5.1 純水液滴於PC及PMMA平板上蒸發39 5.2 PC及PMMA平板上之液滴抽取行為40 5.3 實驗結果討論44 第六章、正癸酸於10 mM HCl水溶液中之吸附行為探討47 6.1 正癸酸之實驗結果47 6.2 正癸酸之決定模式與參數51 6.3 結果討論53 第七章、DDA界劑於0.1 mM NaCl水溶液中之吸附行為探討55 7.1 DDA水溶液55 7.2 DDA+0.1 mM NaCl水溶液之實驗結果55 7.3 決定模式與參數60 第八章、正癸酸於正己烷與純水界面之吸附行為探討65 8.1 正癸酸吸附至液-液界面之張力實驗結果65 8.2 正癸酸之分配係數結果67 8.3 平衡張力最適化69 第九章、結論與建議70 參考文獻72

    1.張有義、郭蘭生編譯,〝膠體及界面化學入門〞,高立圖書有限公司,第四章(1999).
    2.D. Myers, “Surfaces, Interfaces, and Colloids: Principles and Applications”; Wiley-Vichy: New York, (1999).
    3.刈米孝夫 〝界面活性劑的原理與應用〞,王鳳英編譯:高立圖書有限公司,第一章、第七章(1990)。
    4.李雅琪,〝聚氧乙烯系非離子型界劑之吸附暨聚集行為研究〞,國立臺灣大學化學工程所博士論文(2002)。
    5.B. J. Palla, D. O. Shah, “Correlation of dispersion stability with surfactant concentration and abrasive particle size for chemical mechanical polishing (cmp) slurries,” J. Dispersion Sci. Technol, 2000, 21, 491.
    6.T. M. Pan, T. F. Lei, C. C. Chen, “Reliability Models of Data Retention and Read-Disturb in 2-Bit Nitride Storage Flash Memory Cells,” IEEE Electron Device Letters, 2000, 21, 338.
    7.J. T. Davies, “Adsorption of long-chain ions I,” Proc. R. SOC. London, 1958, a245,417.
    8.J. T. Davies, “Adsorption of long-chain ions Ⅱ,” Proc. R. SOC. London, 1958, a245 426.
    9.S. S. Dukhin, R. Miller, G. Kretzschmar, “On the theory of adsorption kinetics of ionic surfactants at fluid interfaces. The effect of the electric double layer under quasi-equilibrium conditions on adsorption kinetics,” Colloid Polym. Sci., 1983, 261, 335.
    10.R. Miller, S. S. Dukhin, G. Kretzschmar, “On the theory of adsorption kinetics of ionic surfactants at fluid interfaces. Numerical calculations of the influence of a quasiequilibrium electric double layer,” Colloid Polym. Sci., 1985, 263, 420.
    11.R. P. Borwanker, D. T. Wasan, “On the theory of adsorption kinetics of ionic surfactants at fluid interfaces 2.Numerical calculations of the influence of a quasi-equilibrium electric double layer,” Chem. Eng. Sci., 1986, 41, 199.
    12.R. P. Borwanker, D. T. Wasan, “The kinetics of adsorption of ionic surfactants at gas-liquid surfaces,” Chem. Eng. Sci., 1988, 43, 1323.
    13.S. S. Dukhin, R. Miller, “On the theory of adsorption kinetics of ionic surfactants at fluid interfaces 3.Generalization of the model,” Chem. Eng. Sci., 1991, 269, 923.
    14.C. H. Chang, E. I. Franses, “Modified Langmuir-Hinselwood kinetics for dynamic adsorption of surfactants at the air water interface,” Colloids Surfaces, 1992, 69, 189.
    15.C. H. Chang, E. I. Franses, “Dynamic surface tension behavior of aqueous solutions of N-dodecyl-N,N dimethyl aminobetaine chlorohydrate,” Colloid Polym. Sci, 1994, 272, 447.
    16.C. A. MacLeod, C. J. Radke, “Charge effects in the transient adsorption of ionic,” Langmuir, 1994, 10, 3555.
    17.S. S. Datwani, K. J. Stebe, “Surface tension of an anionic surfactant: equilibrium, dynamics, and analysis for Aerosol-OT,” Langmuir, 2001, 17, 4287.
    18.V. N. Truskett, C. A. Rosslee, N. L. Abbott, “Redox-dependent surface tension and surface phase transitions of a ferrocenyl surfactant: equilibrium and dynamic analyses with fluorescence images,” Langmuir, 19.
    19.S. Hachisua, “Equation of state of ionized monolayers,” J. Colloid Interface Sci., 1970, 33, 445.
    20.V. V. Kalinin, C. J. Radke, “An ion-binding model for ionic surfactant adsorption at aqueous-fluid interfaces,” Colloids Surf. A., 1996, 114, 337.
    21.H. Diamant, and D. Andelman, “Kinetics of surfactant adsorption at fluid-fluid Interfaces,” J. Phys. Chem., 1996, 100, 13732.
    22.H. Diamant, and D. Andelman, “Kinetics of surfactant adsorption at fluid-fluid Interfaces,” J. Phys. Chem., 1996, 100, 13732.
    23.P. Warszynski, W. Barzyk, K. Lunkenheimer, H. Fruhner, “Surface tension and surface potential of Na n-Dodecyl sulfate at the air-solution interface: Model and Experiment,” J. Phys. Chem. B, 1998, 102, 10948.
    24.P. A. Kralchevsky, K. D. Danov, G. Broze, A. Mehreteab, “Thermodynamics of ionic surfactant adsorption with account for the counterion binding: effect of Salts of various valency,” Langmuir, 1999, 15, 2351.
    25.K. D. Danov, V. L. Kolev, P. A. Kralchevsky, G. Broze, A. Mehreteab, “Adsorption kinetics of ionic surfactants after a large initial perturbation. Effect of surface elasticity,” Langmuir, 2000, 16, 2942.
    26.A. J. Prosser, E. I. Franses, “Adsorption and surface tension of ionic surfactants at the air–water interface: review and evaluation of equilibrium models,” Colloids Surf. A., 2001, 178, 1.
    27.P. Warszynski, K. Lunkenheimer, G. Czichocki, “Effect of counterions on the adsorption of ionic surfactants at fluid-fluid interfaces,” Langmuir, 2002, 18, 2506.
    28.V. L. Kolev, K. D. Danov, P. A. Kralchevsky, G. Broze, A. Mehreteab, “Comparison of the van der Waals and Frumkin adsorption isotherms for sodium dodecyl sulfate at various salt concentrations,” Langmuir, 2002, 18, 9106.
    29.G. Para, E. Jarek, P. Warszynski, Z. Adamczyk, K. P. Ananthapadmanabhan, A. Lips, “Effect of electrolytes on surface tension of ionic surfactant solutions,” Colloids Surf. A., 2003, 222, 213.
    30.P. A. Kralchevsky, K. D. Danov, V. L. Kolev, G. Broze, A. Mehreteab, “Effect of nonionic admixtures on the adsorption of ionic surfactants at fluid interfaces I. sodium dodecyl sulfate and dodecanol,” Langmuir, 2003, 19, 504.
    31.A. J. Prosser, E. I. Franses, “New thermodynamic/electrostatic models of adsorption and tension equilibria of aqueous ionic surfactant mixtures: application to sodium dodecyl sulfate/sodium dodecyl sulfonate systems,” J. Colloid Interface Sci., 2003, 263, 606.
    32.D. S. Valkovska, G. C. Shearman, C. D. Bain, R. C. Darton, J. Eastoe, “Adsorption of ionic surfactants at an Expanding air-water interface,” Langmuir, 2004, 20, 4436.
    33.T. D. Gurkova, D. T. Dimitrovaa, K. G. Marinovaa, C. Bilke-Crauseb, C. Gerberb, I. B. Ivanov, “Ionic surfactants on fluid interfaces: determination of the adsorption; role of the salt and the type of the hydrophobic phase,” Colloids Surf. A., 2005, 261, 29.
    34.G. Para, E. Jarek, P. Warszynski, “The surface tension of aqueous solutions of cetyltrimethylammonium cationic surfactants in presence of bromide and chloride counterions,” Colloids Surf. A., 2005, 261, 65.
    35.P. Koelsch, H. Motschmann, “Varying the counterions at a charged interface,” Langmuir, 2005, 21, 3436.
    36.I. B. Ivanov, K. P. Ananthapadmanabhan, A. Lips, “Adsorption and structure of the adsorbed layer of ionic surfactants,” Adv. Colloid Interface Sci., 2006, 123, 189.
    37.G. Para, P. Warszynski, A. Lips, “ACationic surfactant adsorption in the presence of divalent ions,” Colloids Surf. A., 2007, 300, 346.
    38.J. Penfold, I. Tucker, R. K. Thomas, D. J. F. Taylor, X. L. Zhang, C. Bell, C. Breward, P. Howell, “The interaction between sodium alkyl sulfate surfactants and the oppositely charged polyelectrolyte, polyDMDAAC, at the air-water interface: the Role of alkyl chain length and electrolyte and comparison with theoretical predictions,” Langmuir, 2007, 23, 3128.
    39.E. D. Manev, S. V. Sazdanova, R. Tsekov, S. I. Karakashev, A. V. Nguyen, “Adsorption of ionic surfactants,” Colloids Surf. A., 2008, 319, 29.
    40.J. Wegrzynska, G. Para, J. Chlebicki, P. Warszynski, K. A. Wilk, “Adsorption of multiple ammonium salts at the air/solution interface,” Langmuir, 2008, 24, 3171.
    41.M. E. R. Shanahan, C. Bourgès, Int. J. Adhes. Adhes. 1994, 14, 201–205.
    42.C. Bourgès-Monnier, M. E. R. Shanahan, Langmuir 1995, 11, 2820–2829.
    43.P. G. de Gennes, F. Brochard-Wyart, D. Quéré, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves; Springer, 2003.
    44.N. Anantharaju, M. V. Panchagnula, S. Vedantam, S. Neti, S. Tatic-Lucic, Langmuir 2007, 23, 11673–11676.
    45.C. Zhang, X. Zhu, L. Zhou, Chem. Phys. Lett. 2011, 508, 134–138.
    46.P. G. Pittoni, C.-C Chang,.; T. Yu, S. Lin, Colloids Surfaces A Physicochem. Eng. Asp. 2013, 432, 89–98.
    47.T. A. H. Nguyen, A. V. Nguyen, M. A. Hampton, Z. P. Xu, L. Huang, V. Rudolph, Chem. Eng. Sci. 2012, 69, 522–529.
    48.F. Girard, M. Antoni, S. Faure, A. Steinchen, Colloids Surfaces A Physicochem. Eng. Asp. 2008, 323, 36–49.
    49.D. Orejon, K. Sefiane, M. E. R. Shanahan, Langmuir 2011, 27, 12834–12843.
    50.E. Bormashenko, A. Musin, M. Zinigrad, Colloids Surfaces A Physicochem. Eng. Asp. 2011, 385, 235–240.
    51.A. Marmur, Langmuir, 2003, 19, 8343-8348
    52.J.-B. Dupont, D. Legendre , J. Comput. Phys. 2010, 229, 2453–2478.
    53.E. Dussan, , Annu. Rev. Fluid Mech. 1979, 11, 371.
    54.G. Strcim, M. Fredrikssom, P. Stenius, B. Radoev, J. Colloid. Interf. Sci. 1990, 134, 107.
    55.O. N. Tretinnikov, Y. Ikada, Langmuir, 1994, 10, 1606.
    56.M.-Y. Zhou, P. Sheng, Phys. Rev. Lett. 1990, 64, 882.
    57.W. Rose and R. Heins, J. Colloid. Interf. Sci. 1962, 17, 39.
    58.R. Fetzer, M. Ramiasa, J. Ralston, Langmuir, 2009, 25, 8069.
    59.R. Fetzer and J. Ralston, J. Phys. Chem. C, 2009, 113, 8888.
    60.Cox R. The dynamics of the spreading of liquids on a solid surface. Part1. Viscous flow. J. Fluid Mech., 1986, 168, 169–94.
    61.Hoffman RL. A study of the advancing interface: Ii. Theoretical prediction of the dynamic contact angle in liquid-gas systems. J. Colloid. Interf. Sci., 1983, 94, 470–486.
    62.Huh C, Mason S. The steady movement of a liquid meniscus in a capillary tube. J. Fluid Mech., 1977, 81, 401–419.
    63.Huh C, Scriven L. Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid. Interf. Sci., 1971, 35, 85–101.
    64.Lowndes J. The numerical simulation of the steady movement of a fluid meniscus in a capillary tube. J. Fluid Mech., 1980, 101, 631–646.
    65.Yarnold G, Mason B. A theory of the angle of contact. Proc. Phys. Soc. Sect. B, 1949, 62, 121.
    66.Blake T, Haynes J. Kinetics of liquid liquid displacement. J. Colloid. Interf. Sci., 1969, 30, 421–423.
    67.Petrov P, Petrov I. A combined molecular-hydrodynamic approach to wetting kinetics. Langmuir, 1992, 8, 1762–1767.
    68.S. Y. Lin, Ph. D. Dissertation, City University of New York, New York, 1991.
    69.G. D. J. Phillies, “Reactive contribution to the apparent translational diffusion coefficient of a micelle,” J. Phys. Chem. 1981, 85, 3540.
    70.P. C. Hiemenz, Principles of Colloid Surface Chemistry; Marcel Dekker, New York; Chapter 7, 1986.
    71.K. J. Stebe, S. Y. Lin, Dynamic surface tension and surfactant mass transfer kinetics: measurement techniques and analysis, in Handbook of surfaces and interfaces of materials: Surface and interface analysis and properties; Nalwa, H. S., Ed.; Academic Press: San Diego; Chapter 2, 2001.
    72.R. Y. Tsay, S. C. Yan, S. Y. Lin, “Comments on the Adsorption Isotherm and Determination of Adsorption Kinetics,” Rev. Sci. Instrum., 1995, 66, 5065.
    73.J. F. Baret, “State, electrical and rheological properties of model and dioxan isolated lignin films at the air-water interface,” J. Colloid Interface Sci., 1969, 30, 1.
    74.R. Aveyard, D. A. Haydon, An Introduction to the Principles of Surface Chemistry; Cambridge University Press: Cambridge; Chapters 1 and 3, 1973.
    75.V. B. Fainerman, S. V. Lylyk, “Adsorption kinetics of nonanol at the air-water interface: considering molecular interaction or aggregation within surface layer,” Kolloidn. Zh., 1982, 44, 538.
    76.A. Z. Frumkin, “On the adsorption properties of surface-chemically pure aqueous solutions of n-alkyl-dimethyl and n-alkyl-diethyl phosphine oxides,” Phys. Chem. (Leipzig), 1925, 116, 466.
    77.S. Y. Lin, T. L. Lu, W. B. Hwang, “Adsorption and Desorption Kinetics of C12E4 on Perturbed Interfaces,” Langmuir, 1995, 11, 555.
    78.S. Y. Lin, W. J. Wang, C. T. Hsu, “Adsorption Kinetics of Nonanol at the Air-Water Interface: Considering Molecular Interaction or Aggregation within Surface Layer,” Langmuir, 1997, 13, 6211.
    79.Y. C. Lee, Y. B. Liou, R. Miller, H. S. Liu, S. Y. Lin, “Surface equation of state of nonionic cmen surfactants,” Langmuir, 2002, 18, 2686.
    80.D. O. Johnson, K. J. Stebe, “a study of surfactant adsorption kinetics: effect of intermolecular interaction between adsorbed molecules,” J. Colloid Interface Sci., 1996, 182, 526.
    81.J. F. Baret, “Fast adsorption at the liquid-gas interface,” J. Phys. Chem., 1968, 72, 2755.
    82.R. P. Borwankar, D. T. Wasan, “Kinetics of surfactant adsorption at fluid/fluid interfaces: non-ionic surfactants,” Chem. Eng. Sci., 1988, 43, 1323.
    83.D. C. England, J. C. Berg, “Surface fractionation of multicomponent oil mixtures,” AIChE J., 1971, 17, 313.
    84.V. B. Fainerman, “Theory and experiment on the measurement of kinetic rate constants for surfactant exchange at an air/water interface,” Colloid J. USSR, 1977, 39, 91.
    85.R. Miller, K. Lunkenheimer, “Adsorption kinetics measurements of some nonionic surfactants,” Colloid Polymer Sci., 1986, 264, 357.
    86.P. Joos, G. Serrien, “Dynamic surface and interfacial tensions of surfactant and polymer solutions,” J. Colloid Interface. Sci., 1989, 127, 97.
    87.S. Y. Lin, K. Mckeigne, C. Maldarelli, “A study on surfactant adsorption kinetics: effect of bulk concentration on the limiting adsorption rate constant,” Langmuir, 1991, 7, 1055.
    88.S. Y. Lin, K. Mckeigne, C. Malderelli, “Diffusion-controlled surfactant adsorption studied by pendant drop digitization,” AIChE J., 1990, 36, 1785.
    89.C. A. Maclleod, C. J. Radke, “Dynamics of surfactant sorption at the air/water interface: continuous-flow tensiometry,” J. Colloid Interface Sci., 1994, 166, 73.
    90.P. S. de Laplace, Mechanique Celeste, Supplement to book, 1806, 10.
    91.R. Y. Tsay, T. F. Wu, S. Y. Lin, “Observation of G-LE and LE-LC Phase Transitions of Adsorbed 1-Dodecanol Monolayer from Dynamic Surface-Tension Profiles,” J. Phys. Chem. B, 2004, 108, 18623.
    92.S. S. Datwani, K. J. Stebe, “Surface Tension of an Anionic Surfactant: Equilibrium, Dynamics, and Analysis for Aerosol-OT,” Langmuir, 2001, 17, 4287.
    93.W. J. Musnicki, N. W. Lloyd, R. J. Phillips, S. R. Dungan, “Diffusion of Sodium Dodecyl Sulfate Micelles in Agarose Gels,” J. Colloid Interface Sci., 2011, 356, 165.

    無法下載圖示 全文公開日期 2021/06/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE