簡易檢索 / 詳目顯示

研究生: 林敬揚
Jing-Yang Lin
論文名稱: 官能化奈米鑽石摻雜聚醯胺奈米複合薄膜對奈米過濾效能之影響
Effect of functionalized-nanodiamonds doping on the nanofiltration performance of polyamide nanocomposite membranes.
指導教授: 洪維松
Wei-Song Hung
口試委員: 洪維松
Wei-song Hung
賴君義
Juin-Yih Lai
王志逢
Chih-Feng Wang
胡蒨傑
Chien-Chieh Hu
劉英麟
Ying-Ling Liu
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 94
中文關鍵詞: 奈米鑽石界面聚合奈米過濾鹽類分離界面活性劑
外文關鍵詞: Nanodiamond, Interfacial polymerization, Nanofiltration, Salt separation, Surfactant
相關次數: 點閱:293下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在科技世代逐漸發展,全世界對於民生用水及工業用水的需求迎來了更高的挑戰,而在當今科技發展最為完備的水處理技術當中屬海水淡化的程序。海水淡化中,奈米過濾扮演著將細微且帶有電荷的二價鹽類離子及金屬離子分離的程序,在此類程序的應用端屬界面聚合膜研究為大宗,界面聚合膜可以利用摻入不同尺寸的添加物、改善聚醯胺的交聯結構及改變界面聚合時相的行為來達到效能提升的目的,並且以改善膜表面電性達到更顯著的改善以用於更廣的奈米過濾應用程序。
    本研究利用加入三種不同官能化奈米鑽石探討與PIP-TMC交聯成聚醯胺的狀況,並且在添加奈米鑽石之後,添加界面活性劑進一步改變相行為,改善成膜的聚醯胺型態。
    由結果指出,分別添加羧酸基奈米鑽石、氫基奈米鑽石及胺基奈米鑽石於水相溶液中界面聚合成聚醯胺,會改變原始的親水性能,並且藉由不同官能基團所帶的電荷的特性,改變了膜的表面電位。而胺基奈米鑽石所帶有的胺官能基團能夠更進一步摻入PIP-TMC的交聯行為而改變交聯結構,使對於MgCl2、NaCl等較難分離的一價鹽類有改善效果,其中當添加量濃度為400 ppm時,對於NaCl的截留率及鹽類通量達到44.9% 及12.35 (LMH/bar)。
    以此胺基奈米鑽石的添加情況,我們將三種不同碳鏈長的界面活性劑 (SOS、SDS、SHS)添加共混於水相溶液之中。藉由鑑定結果發現,膜表面變得更親水且所測得的交聯度降低,而在SDS添加時對於NaCl的截留率有線性的上升,從44.8%提升至54.15%,通量則下降至8.35 (LMH/bar),達到了對於一價鹽類更高的截留率。
    藉由探討了奈米鑽石與界面活性劑兩種添加的變化,我們發現膜表面電性容易被不同電性的添加物所影響,並且能夠在添加劑的方面改善了分離效能,多樣化聚醯胺薄膜於奈米過濾薄膜的研究發展。


    With the gradual development in science and technology, the world's water demand for people's livelihood and industrial water has increased and resulted in greater challenges. Among the most thorough water treatment technologies in today's technological development to solve this water crisis is the desalination of seawater, where the nanofiltration process plays a crucial role in separating fine and charged divalent ions and metal ions. In this process, polymeric membranes prepared using interfacial polymerization are typically used. These membranes could be modified by incorporating differently-sized additives, improving the cross-linking structure of polyamides, and changing the behavior of the interfacial polymerization phase in able to improve the surface electrical properties of the membrane to achieve more favorable separation performance for a wider range of nanofiltration applications.

    In this study, three different functionalized nanodiamonds were used and investigated for cross-linking with Piperazine-Trimethyl Chloride to form polyamides. Furthermore, the addition of surfactants has significant effects in the phase behavior and has improved the membrane-forming polyamides state.

    The results showed that the nanodiamonds functionalized with carboxyl (COOH-nanodiamond), hydrogen (hydrogen-nanodiamond), and amine (NH2-nanodiamond) were successfully incorporated into the aqueous solution. The interfacial polymerization of polyamides changed the original hydrophilic properties, and the surface charge of the membrane has been changed depending on the charges carried by different functional groups added. It was revealed that the amine-functionalized nanodiamonds can result in a crosslinking behavior of PIP-TMC that lead to a different structure, which could improve the rejection of monovalent salts such as MgCl2 and NaCl that are difficult to separate. When the added nanodiamond concentration was 400 ppm, the rejection rate and permeance for NaCl aqueous solution reached 44.9% and 12.35 (LMH/bar), respectively.

    Based on the incorporated amino-nanodiamonds, we also added three surfactants (Sodium Octyl Sulfate, Sodium Dodecyl Sulfate, Sodium Hexadecyl Sulfate) with different carbon chain lengths into the aqueous solution through mixing. From the results, it was found that when Sodium Dodecyl Sulfate was added, the membrane surface became more hydrophilic, and the measured degree of cross-linking decreased. Although the permeance has decreased to 8.35 LMH/bar, the rejection for NaCl increased linearly from 44.8% to 54.15%, indicating a higher rejection for monovalent ions.

    目錄 摘要 ……………………………………………………………………………………II Abstract …………………………………………………………………………………..III 目錄 ……………………………………………………………………………………..V 圖目錄 ………………………………………………………………………………...VII 表目錄 ………………………………………………………………………………XII 第一章 緒論 1 1.1 前言 1 1.2 薄膜分離技術 1 1.2.1 薄膜分離 1 1.2.2 奈米過濾薄膜 3 1.2.3 有機高分子/無機複合材料 5 1.3 界面聚合技術 7 1.3.1 界面聚合 7 1.3.2 界面聚合與無機奈米材料 8 1.3.3 界面聚合與界面活性劑 9 1.4 文獻回顧 11 1.5 研究動機與目的 18 第二章 實驗材料與方法 19 2.1 實驗藥品 19 2.2 實驗儀器 20 2.3 實驗步驟 21 2.3.1 基材準備 21 2.3.2 溶液配製 21 2.3.3 界面聚合薄膜製備 23 2.4 材料鑑定與性質檢測 23 2.4.1 場發式掃描電子顯微鏡 23 2.4.2 原子力顯微鏡 24 2.4.3 接觸角 24 2.4.4 衰減全反射傅里葉轉換紅外線光譜儀 25 2.4.5 X射線光電子能譜儀 26 2.4.6 電動力學固體表面電位分析儀 26 2.4.7 X射線繞射儀 26 2.4.8 循環掃流奈米過濾裝置 27 2.4.9 分子量截留實驗 29 第三章 結果與討論 30 3.1奈米鑽石摻入奈米複合薄膜之鑑定與分析 30 3.2奈米鑽石摻入奈米複合薄膜之分離效能檢測 41 3.3界面活性劑/奈米鑽石共混奈米複合薄膜之鑑定與分析 48 3.4界面活性劑/奈米鑽石共混奈米複合薄膜之奈米過濾效能檢測 63 第四章 結論 72 第五章 參考文獻 73

    [1] M. Elimelech, The global challenge for adequate and safe water, Journal of Water Supply: Research and Technology—AQUA 55(1) (2006) 3-10.
    [2] J.E. Cadotte, R. Petersen, R. Larson, E. Erickson, A new thin-film composite seawater reverse osmosis membrane, Desalination 32 (1980) 25-31.
    [3] X. Lu, M. Elimelech, Fabrication of desalination membranes by interfacial polymerization: History, current efforts, and future directions, Chemical Society Reviews 50(11) (2021) 6290-6307.
    [4] Y. Li, Y. Su, Y. Dong, X. Zhao, Z. Jiang, R. Zhang, J. Zhao, Separation performance of thin-film composite nanofiltration membrane through interfacial polymerization using different amine monomers, Desalination 333(1) (2014) 59-65.
    [5] Y. Mansourpanah, S. Madaeni, A. Rahimpour, Fabrication and development of interfacial polymerized thin-film composite nanofiltration membrane using different surfactants in organic phase; study of morphology and performance, Journal of Membrane Science 343(1-2) (2009) 219-228.
    [6] W. Lau, S. Gray, T. Matsuura, D. Emadzadeh, J.P. Chen, A. Ismail, A review on polyamide thin film nanocomposite (TFN) membranes: History, applications, challenges and approaches, Water research 80 (2015) 306-324.
    [7] J.B. Morales‐Cuevas, S. Pérez‐Sicairos, S.W. Lin, M.I. Salazar‐Gastélum, Evaluation of a modified spray‐applied interfacial polymerization method for preparation of nanofiltration membranes, Journal of Applied Polymer Science 136(42) (2019) 48129.
    [8] Z. Wang, X. You, C. Yang, W. Li, Y. Li, Y. Li, J. Shen, R. Zhang, Y. Su, Z. Jiang, Ultrathin polyamide nanofiltration membranes with tunable chargeability for multivalent cation removal, Journal of Membrane Science 642 (2022) 119971.
    [9] G. Belfort, Synthetic membrane process: Fundamentals and water applications, Elsevier2012.
    [10] P. Brandhuber, G. Amy, Alternative methods for membrane filtration of arsenic from drinking water, Desalination 117(1-3) (1998) 1-10.
    [11] C.K. Diawara, Nanofiltration process efficiency in water desalination, Separation & purification reviews 37(3) (2008) 302-324.
    [12] M.A. Abdel-Fatah, Nanofiltration systems and applications in wastewater treatment, Ain Shams Engineering Journal 9(4) (2018) 3077-3092.
    [13] S. Guo, Y. Wan, X. Chen, J. Luo, Loose nanofiltration membrane custom-tailored for resource recovery, Chemical Engineering Journal 409 (2021) 127376.
    [14] C. Zhou, X.-l. Gao, S.-s. Li, C.-j. Gao, Fabrication and characterization of novel composite nanofiltration membranes based on zwitterionic O-carboxymethyl chitosan, Desalination 317 (2013) 67-76.
    [15] C. Liu, Y. Guo, X. Wei, C. Wang, M. Qu, D.W. Schubert, C. Zhang, An outstanding antichlorine and antibacterial membrane with quaternary ammonium salts of alkenes via in situ polymerization for textile wastewater treatment, Chemical Engineering Journal 384 (2020) 123306.
    [16] M.J. Raaijmakers, N.E. Benes, Current trends in interfacial polymerization chemistry, Progress in polymer science 63 (2016) 86-142.
    [17] B. Ukrainsky, G.Z. Ramon, Temperature measurement of the reaction zone during polyamide film formation by interfacial polymerization, Journal of Membrane Science 566 (2018) 329-335.
    [18] S. Behera, A.K. Suresh, Kinetics of interfacial polycondensation reactions–development of a new method and its validation, Polymer 127 (2017) 28-44.
    [19] I.J. Roh, Influence of rupture strength of interfacially polymerized thin-film structure on the performance of polyamide composite membranes, Journal of Membrane Science 198(1) (2002) 63-74.
    [20] Q. Zhang, L. Fan, Z. Yang, R. Zhang, Y.-n. Liu, M. He, Y. Su, Z. Jiang, Loose nanofiltration membrane for dye/salt separation through interfacial polymerization with in-situ generated TiO2 nanoparticles, Applied Surface Science 410 (2017) 494-504.
    [21] B. Khorshidi, T. Thundat, D. Pernitsky, M. Sadrzadeh, A parametric study on the synergistic impacts of chemical additives on permeation properties of thin film composite polyamide membrane, Journal of Membrane Science 535 (2017) 248-257.
    [22] W. Fang, L. Shi, R. Wang, Interfacially polymerized composite nanofiltration hollow fiber membranes for low-pressure water softening, Journal of Membrane Science 430 (2013) 129-139.
    [23] Y. Li, T.-H. Chen, C.-Y. Yu, T. Wu, X.-T. Zhao, J.-F. Pan, L.-F. Liu, Facile polyamide microstructure adjustment of the composite reverse osmosis membrane assisted by PF127/SDS mixed micelles for improving seawater desalination performance, Desalination 521 (2022) 115395.
    [24] M. Liu, Y. Zheng, S. Shuai, Q. Zhou, S. Yu, C. Gao, Thin-film composite membrane formed by interfacial polymerization of polyvinylamine (PVAm) and trimesoyl chloride (TMC) for nanofiltration, Desalination 288 (2012) 98-107.
    [25] I.-C. Kim, B.-R. Jeong, S.-J. Kim, K.-H. Lee, Preparation of high flux thin film composite polyamide membrane: The effect of alkyl phosphate additives during interfacial polymerization, Desalination 308 (2013) 111-114.
    [26] C. Kong, T. Shintani, T. Kamada, V. Freger, T. Tsuru, Co-solvent-mediated synthesis of thin polyamide membranes, Journal of membrane science 384(1-2) (2011) 10-16.
    [27] Z. Zhang, Y. Qin, G. Kang, H. Yu, Y. Jin, Y. Cao, Tailoring the internal void structure of polyamide films to achieve highly permeable reverse osmosis membranes for water desalination, Journal of Membrane Science 595 (2020) 117518.
    [28] S. Hermans, R. Bernstein, A. Volodin, I.F. Vankelecom, Study of synthesis parameters and active layer morphology of interfacially polymerized polyamide–polysulfone membranes, Reactive and Functional Polymers 86 (2015) 199-208.
    [29] S.P. Nunes, P.Z. Culfaz-Emecen, G.Z. Ramon, T. Visser, G.H. Koops, W. Jin, M. Ulbricht, Thinking the future of membranes: Perspectives for advanced and new membrane materials and manufacturing processes, Journal of Membrane Science 598 (2020) 117761.
    [30] L. Lin, R. Lopez, G.Z. Ramon, O. Coronell, Investigating the void structure of the polyamide active layers of thin-film composite membranes, Journal of Membrane Science 497 (2016) 365-376.
    [31] M. Stolov, V. Freger, Membrane charge weakly affects ion transport in reverse osmosis, Environmental Science & Technology Letters 7(6) (2020) 440-445.
    [32] S.H. Kim, S.-Y. Kwak, T. Suzuki, Positron annihilation spectroscopic evidence to demonstrate the flux-enhancement mechanism in morphology-controlled thin-film-composite (TFC) membrane, Environmental science & technology 39(6) (2005) 1764-1770.
    [33] V. Freger, Swelling and morphology of the skin layer of polyamide composite membranes: an atomic force microscopy study, Environmental Science & Technology 38(11) (2004) 3168-3175.
    [34] D.L. Shaffer, K.E. Feldman, E.P. Chan, G.R. Stafford, C.M. Stafford, Characterizing salt permeability in polyamide desalination membranes using electrochemical impedance spectroscopy, Journal of Membrane Science 583 (2019) 248-257.
    [35] G.N.B. Baroña, J. Lim, M. Choi, B. Jung, Interfacial polymerization of polyamide-aluminosilicate SWNT nanocomposite membranes for reverse osmosis, Desalination 325 (2013) 138-147.
    [36] M. Namvar-Mahboub, M. Pakizeh, Development of a novel thin film composite membrane by interfacial polymerization on polyetherimide/modified SiO2 support for organic solvent nanofiltration, Separation and Purification Technology 119 (2013) 35-45.
    [37] L. Jin, W. Shi, S. Yu, X. Yi, N. Sun, C. Ma, Y. Liu, Preparation and characterization of a novel PA-SiO2 nanofiltration membrane for raw water treatment, Desalination 298 (2012) 34-41.
    [38] S.Y. Lee, H.J. Kim, R. Patel, S.J. Im, J.H. Kim, B.R. Min, Silver nanoparticles immobilized on thin film composite polyamide membrane: characterization, nanofiltration, antifouling properties, Polymers for Advanced Technologies 18(7) (2007) 562-568.
    [39] T. Istirokhatun, Y. Lin, Q. Shen, K. Guan, S. Wang, H. Matsuyama, Ag-based nanocapsule-regulated interfacial polymerization Enables synchronous nanostructure towards high-performance nanofiltration membrane for sustainable water remediation, Journal of Membrane Science 645 (2022) 120196.
    [40] A. Al-Nahari, S. Li, B. Su, Negatively charged nanofiltration membrane with high performance via the synergetic effect of benzidinedisulfonic acid and trimethylamine during interfacial polymerization, Separation and Purification Technology 291 (2022) 120947.
    [41] R. Hu, R. Zhang, Y. He, G. Zhao, H. Zhu, Graphene oxide-in-polymer nanofiltration membranes with enhanced permeability by interfacial polymerization, Journal of Membrane Science 564 (2018) 813-819.
    [42] A.S. Al-Hobaib, K.M. Al-Sheetan, M.R. Shaik, M. Al-Suhybani, Modification of thin-film polyamide membrane with multi-walled carbon nanotubes by interfacial polymerization, Applied Water Science 7(8) (2017) 4341-4350.
    [43] N. Akther, Y. Kawabata, S. Lim, T. Yoshioka, S. Phuntsho, H. Matsuyama, H.K. Shon, Effect of graphene oxide quantum dots on the interfacial polymerization of a thin-film nanocomposite forward osmosis membrane: An experimental and molecular dynamics study, Journal of Membrane Science 630 (2021) 119309.
    [44] D. Qin, G. Huang, D. Terada, H. Jiang, M.M. Ito, A.H. Gibbons, R. Igarashi, D. Yamaguchi, M. Shirakawa, E. Sivaniah, Nanodiamond mediated interfacial polymerization for high performance nanofiltration membrane, Journal of Membrane Science 603 (2020) 118003.
    [45] L. Fusco, E. Avitabile, V. Armuzza, M. Orecchioni, A. Istif, D. Bedognetti, T. Da Ros, L.G. Delogu, Impact of the surface functionalization on nanodiamond biocompatibility: a comprehensive view on human blood immune cells, Carbon 160 (2020) 390-404.
    [46] V.N. Mochalin, Y. Gogotsi, Nanodiamond–polymer composites, Diamond and Related Materials 58 (2015) 161-171.
    [47] Y. Liu, Z. Gu, J.L. Margrave, V.N. Khabashesku, Functionalization of nanoscale diamond powder: fluoro-, alkyl-, amino-, and amino acid-nanodiamond derivatives, Chemistry of materials 16(20) (2004) 3924-3930.
    [48] V.N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, The properties and applications of nanodiamonds, Nature nanotechnology 7(1) (2012) 11-23.
    [49] B. Spitsyn, J. Davidson, M. Gradoboev, T. Galushko, N. Serebryakova, T. Karpukhina, I. Kulakova, N. Melnik, Inroad to modification of detonation nanodiamond, Diamond and Related Materials 15(2-3) (2006) 296-299.
    [50] O.A. Shenderova, D.M. Gruen, Ultrananocrystalline diamond: synthesis, properties and applications, William Andrew2012.
    [51] E. Ōsawa, Monodisperse single nanodiamond particulates, Pure and Applied Chemistry 80(7) (2008) 1365-1379.
    [52] R. Zhang, Y. Zhu, L. Zhang, Y. Lu, Z. Yang, Y. Zhang, J. Jin, Polyamide Nanofiltration Membranes from Surfactant‐Assembly Regulated Interfacial Polymerization: The Effect of Alkyl Chain, Macromolecular Chemistry and Physics 222(20) (2021) 2100222.
    [53] L. Gong, Y. Zhu, D. Dong, Y. Zhang, L. Gui, J. Jin, Polyamide Nanofiltration Membrane from Surfactant-assembly Regulated Interfacial Polymerization of 2-Methylpiperazine for Divalent Cations Removal, Chemical Research in Chinese Universities (2021) 1-8.
    [54] Y. Liang, Y. Zhu, C. Liu, K.-R. Lee, W.-S. Hung, Z. Wang, Y. Li, M. Elimelech, J. Jin, S. Lin, Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 Å precision separation, Nature communications 11(1) (2020) 1-9.
    [55] Y. Liang, X. Teng, R. Chen, Y. Zhu, J. Jin, S. Lin, Polyamide Nanofiltration Membranes from Emulsion-Mediated Interfacial Polymerization, ACS ES&T Engineering 1(3) (2021) 533-542.
    [56] X. Li, Z. Wang, X. Han, Y. Liu, C. Wang, F. Yan, J. Wang, Regulating the interfacial polymerization process toward high-performance polyamide thin-film composite reverse osmosis and nanofiltration membranes: A review, Journal of Membrane Science 640 (2021) 119765.
    [57] J. Cadotte, R. King, R. Majerle, R. Petersen, Interfacial synthesis in the preparation of reverse osmosis membranes, Journal of Macromolecular Science—Chemistry 15(5) (1981) 727-755.
    [58] S. Qiu, L. Wu, L. Zhang, H. Chen, C. Gao, Preparation of reverse osmosis composite membrane with high flux by interfacial polymerization of MPD and TMC, Journal of applied polymer science 112(4) (2009) 2066-2072.
    [59] K.P. Lee, T.C. Arnot, D. Mattia, A review of reverse osmosis membrane materials for desalination—Development to date and future potential, Journal of Membrane Science 370(1-2) (2011) 1-22.
    [60] M. Ben-Sasson, X. Lu, E. Bar-Zeev, K.R. Zodrow, S. Nejati, G. Qi, E.P. Giannelis, M. Elimelech, In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation, Water research 62 (2014) 260-270.
    [61] G.L. Jadav, P.S. Singh, Synthesis of novel silica-polyamide nanocomposite membrane with enhanced properties, Journal of Membrane Science 328(1-2) (2009) 257-267.
    [62] J. Duan, Y. Pan, F. Pacheco, E. Litwiller, Z. Lai, I. Pinnau, High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8, Journal of Membrane Science 476 (2015) 303-310.
    [63] H. Zhao, S. Qiu, L. Wu, L. Zhang, H. Chen, C. Gao, Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes, Journal of Membrane Science 450 (2014) 249-256.
    [64] X. Wu, G. Zhou, X. Cui, Y. Li, J. Wang, X. Cao, P. Zhang, Nanoparticle-assembled thin film with amphipathic nanopores for organic solvent nanofiltration, ACS applied materials & interfaces 11(19) (2019) 17804-17813.
    [65] D. Emadzadeh, W.J. Lau, T. Matsuura, A.F. Ismail, M. Rahbari-Sisakht, Synthesis and characterization of thin film nanocomposite forward osmosis membrane with hydrophilic nanocomposite support to reduce internal concentration polarization, Journal of Membrane Science 449 (2014) 74-85.
    [66] D. Emadzadeh, W.J. Lau, T. Matsuura, M. Rahbari-Sisakht, A.F. Ismail, A novel thin film composite forward osmosis membrane prepared from PSf–TiO2 nanocomposite substrate for water desalination, Chemical Engineering Journal 237 (2014) 70-80.
    [67] D. Emadzadeh, W. Lau, M. Rahbari-Sisakht, A. Daneshfar, M. Ghanbari, A. Mayahi, T. Matsuura, A. Ismail, A novel thin film nanocomposite reverse osmosis membrane with superior anti-organic fouling affinity for water desalination, Desalination 368 (2015) 106-113.
    [68] M. Ghanbari, D. Emadzadeh, W. Lau, T. Matsuura, A. Ismail, Synthesis and characterization of novel thin film nanocomposite reverse osmosis membranes with improved organic fouling properties for water desalination, Rsc Advances 5(27) (2015) 21268-21276.
    [69] J. nan Shen, C. chao Yu, H. min Ruan, C. jie Gao, B. Van der Bruggen, Preparation and characterization of thin-film nanocomposite membranes embedded with poly (methyl methacrylate) hydrophobic modified multiwalled carbon nanotubes by interfacial polymerization, Journal of Membrane Science 442 (2013) 18-26.
    [70] P. Karami, Khorshidi, B., Shamaei, L., Beaulieu, E., Soares, J. B., & Sadrzadeh, M. , Nanodiamond-enabled thin-film nanocomposite polyamide membranes for high-temperature water treatment. , ACS Applied Materials & Interfaces 12(47) (2020) 53274-5328.
    [71] B. Tang, Z. Huo, P. Wu, Study on a novel polyester composite nanofiltration membrane by interfacial polymerization of triethanolamine (TEOA) and trimesoyl chloride (TMC): I. Preparation, characterization and nanofiltration properties test of membrane, Journal of Membrane Science 320(1-2) (2008) 198-205.
    [72] M.F. Jimenez-Solomon, Q. Song, K.E. Jelfs, M. Munoz-Ibanez, A.G. Livingston, Polymer nanofilms with enhanced microporosity by interfacial polymerization, Nature materials 15(7) (2016) 760-767.
    [73] B.J.A. Tarboush, D. Rana, T. Matsuura, H. Arafat, R. Narbaitz, Preparation of thin-film-composite polyamide membranes for desalination using novel hydrophilic surface modifying macromolecules, Journal of Membrane Science 325(1) (2008) 166-175.
    [74] J. Hu, Y. Pu, M. Ueda, X. Zhang, L. Wang, Charge-aggregate induced (CAI) reverse osmosis membrane for seawater desalination and boron removal, Journal of Membrane Science 520 (2016) 1-7.
    [75] M. Dalwani, N.E. Benes, G. Bargeman, D. Stamatialis, M. Wessling, Effect of pH on the performance of polyamide/polyacrylonitrile based thin film composite membranes, Journal of Membrane Science 372(1-2) (2011) 228-238.
    [76] S.-J. Xu, Q. Shen, L.-H. Luo, Y.-H. Tong, Y.-Z. Wu, Z.-L. Xu, H.-Z. Zhang, Surfactants attached thin film composite (TFC) nanofiltration (NF) membrane via intermolecular interaction for heavy metals removal, Journal of Membrane Science 642 (2022) 119930.
    [77] C. Klaysom, S. Hermans, A. Gahlaut, S. Van Craenenbroeck, I.F. Vankelecom, Polyamide/Polyacrylonitrile (PA/PAN) thin film composite osmosis membranes: Film optimization, characterization and performance evaluation, Journal of Membrane Science 445 (2013) 25-33.
    [78] F. Carn, A. Colin, O. Pitois, M. Vignes-Adler, R. Backov, Foam drainage in the presence of nanoparticle− surfactant mixtures, Langmuir 25(14) (2009) 7847-7856.
    [79] J.M. Gohil, P. Ray, A review on semi-aromatic polyamide TFC membranes prepared by interfacial polymerization: Potential for water treatment and desalination, Separation and Purification Technology 181 (2017) 159-182.
    [80] Y. Cui, X.-Y. Liu, T.-S. Chung, Ultrathin polyamide membranes fabricated from free-standing interfacial polymerization: Synthesis, modifications, and post-treatment, Industrial & Engineering Chemistry Research 56(2) (2017) 513-523.

    無法下載圖示 全文公開日期 2025/08/29 (校內網路)
    全文公開日期 2025/08/29 (校外網路)
    全文公開日期 2025/08/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE