簡易檢索 / 詳目顯示

研究生: 董泯言
Min-yan Dong
論文名稱: 改質雙分子界面活性劑之製備、界面性質與奈米粒子水溶液分散性之研究
Preparation, surface-activities and dispersion of nano-particle aqueous solution of modified Gemini surfactants.
指導教授: 郭中豐
Chung-Feng Jeffrey Kuo
口試委員: 陳耿明
Keng-Ming Chen
許應舉
Ying-Gev, Hsu
黃昌群
Chang-Chiun Huang
王英靖
Ing-Jing Wang
林河木
Ho-mu Lin
劉興鑑
Hsin-Jiant Liu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 128
中文關鍵詞: 雙分子界面活性劑界面性質複合體結構分散性田口法
外文關鍵詞: Gemini surfactant, surface activity, complex formation, dispersibility, Taguchi method
相關次數: 點閱:233下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究先以馬來酸酐構造為連結基與聚乙二醇十八烷基醚反應形成兩邊對稱結構之界面活性劑,再導入陰離子基團於連結基處而合成一系列改質雙分子界面活性劑。所合成的產物以紅外線光譜分析(FT-IR)、核磁共振光譜(1H-NMR)確認其構造,所測試之界面性質包括表面張力、接觸角與起泡性,並與傳統單分子界面活性劑比較其性質差異。實驗中並測試pH緩衝能力、分散性、乳化性、精練性與染料相互作用等性質。
    由界面活性結果顯示合成產物較傳統單分子界面活性劑具有較低的表面張力、臨界微胞濃度、表面吸附濃度與分子佔有面積,並具有較佳的濕潤性與低起泡性,顯示合成產物之雙分子構造具有較佳的界面性質。從乳化性質分析結果得知,分子佔有面積較小之合成產物可使分子緊密吸附於油滴表面而具有較佳之乳化安定性。從精練實驗結果得知,合成產物之濕潤性較佳者可使棉胚布經加工後得到較高之白度值與吸水性。經測試合成產物與分散染料的結合粒徑分佈及高溫分散性,結果顯示添加合成產物於染液中可使染料粒徑分佈均一,具有良好的分散能力,且在高溫環境下可避免染料粒子二次凝集現象,使染液在高溫狀態下染料粒子仍然具有良好分散性。探討此系列產物與分散染料、直接染料間之相互作用,從分散染料染液之可見光光譜圖結果顯示吸收光譜存在isospestic point且λmax產生偏移,代表合成產物與分散染料分子形成複合體,且隨著合成產物濃度增加,染液吸光度上升,可看出染料在水中之凝集現象因界面活性劑之加入產生分散、溶解作用與形成複合體結構,因而使光譜吸光度增加。
    研究中並針對添加合成產物於TiO2懸浮液中分散性之參數,討論不同參數對奈米粒子分散性的影響,經由結合田口式實驗規劃法分析分散均一的最佳化控制參數,以適用奈米粒子分散液塗佈加工之應用需求。


    In this study, the Gemini surfactant was appended to maleic anhydride through condensation with polyoxyethylenated stearyl ether; anionic hydrophilic moieties were obtained after modifying the spacer units with sodium hydrogen sulfite groups to form a series of modified Gemini surfactants. The molecular structures of these surfactants were confirmed by 1H-NMR and FT-IR. The surface activities were evaluated by surface tension, contact angel, foaming properties, and compared with traditional single-molecule surfactants. The pH buffer capacities, emulsion, dispersibilities, scouring and dye-surfactant interactions were also investigated. Surface tension results exhibited that surfactants have lower surface tension, cmc, surface excess concentration and occupied area per molecule, moreover, these compounds own better wetting and lower foaming than traditional surfactants due to the molecular structures of surfactants are Gemini structure. From emulsion results, the lower value of occupied area per molecule indicated that molecules packed close on oil surface and resulted in better emulsion stability. We have also studied the dispersing abilities of these surfactants toward commercial disperse dyes at elevated temperature. From measurements of the particle sizes and the dispersibilities of the dye solutions, we found that the surfactants exhibited good surface activities and dispersibilities. We used spectrophotometry to investigate the interactions between the dyes and the surfactants in the dye bath. In the case of each of the three kinds of disperse dyes and three kinds of direct dyes, the absorbance of the dye solutions in the presence of the surfactants were higher than those in its absence because of the dispersion, dissolution and forming complex.
    The difference mainly results from TiO2 dispersion adding surfactants which could provide accuracy in controlling size and offer a simple production procedure. Meanwhile, the research also discusses how different parameters affect the particle size distribution. The study uses Taguchi Experimental Design Method so that the most adequate parameters could be predicted and applied to coating process using TiO2 dispersion solution.

    第1章 緒論 1 1-1 前言 1 1-2 文獻探討 5 1-2-1 雙分子界面活性劑製備與界面性質 5 1-2-2 本研究室過去之相關研究 17 1-2-3 TiO2懸浮液分散性 18 1-2-4 田口方法品質工程 23 1-3 研究目的 28 第2章 實驗 29 2-1 實驗試藥 29 2-1-1 合成原料 29 2-1-2 試藥 30 2-1-3 染料 32 2-1-4 實驗儀器 34 2-2 實驗方法 36 2-2-1 合成 36 2-2-2 分析 41 2-2-3 基本性質測定 41 2-2-4 應用性質 46 2-2-5 懸浮液分散性最佳化品質工程 47 第3章 結果與討論 54 3-1 合成與構造分析 54 3-1-1 合成 54 3-1-2 分子構造之測定 56 3-2 基本性質 61 3-2-1 表面張力 61 3-2-2 接觸角 67 3-2-3 起泡性 71 3-2-4 pH緩衝能力 73 3-2-5 螢光光譜 74 3-2-6 乳化性 76 3-2-7 分散性 83 3-2-8 精練性 87 3-3 應用性質 89 3-3-1 染料粒徑分佈 90 3-3-2 高溫分散性 93 3-3-3 染料相互作用 95 3-4 田口方法實驗 111 3-4-1 TiO2水溶液分散性 111 3-4-2 實驗數據分析 116 3-4-3 確認實驗 120 第4章 結論 122 參考文獻 124

    1. M. J. Rosen, Surfactants and Interfacial Phenomena. Third Edition, Chapter 2, New Jersey: John Wiley & Sons, Inc. (2004)
    2. A. Masuyama, C. Endo, S. Takeda, M. Nojima, Chem. Commun., 2023 (1998).
    3. P. E. Hellberg, K. Bergstrom, M. Juberg, J. Surfactants Deterg., 3,369 (2000).
    4. P.E. Hellberg, J. Surfactants Deterg., 5,217 (2002).
    5. L. H. Lin, K. M. Chen, Colloid Surf. A-Physicochem. Eng. Asp., 275, 99 (2006).
    6. H. J. Liu, L. H. Lin, K. M. Chen, J. Appl. Polym. Sci., 86, 3005 (2002).
    7. R. Carmen, H. Thierry, Macromol. Chem. Phys., 206, 1757 (2005).
    8. H. J. Liu, L. H. Lin, K. M. Chen, J. Appl. Polym. Sci., 88, 1236 (2003).
    9. T. Yoshimura, K. Ishihara, K. Esumi, Langmuir, 21, 10409 (2005).
    10. N. Satoru, K. Yoshiro, K. Akio, Y. Hidekazu, Macromol. Biosci., 5, 1066 (2005).
    11. K. Holmberg, Novel Surfactants. Preparations, Applications, and Biodegradability. Second Edition, Chapter 12, New York: Marcel Dekker, Inc. (2002)
    12. K. H. Qi, W. A. Daoud, J. H. Xin, C. L. Mak, W. S. Tang, W. P. Cheung, J. Mater. Chem., 16, 4567 (2006).
    13. D. M. Tobaldia, A. Tuccib, G. Camera-Rodac, G. Baldid, L. Espositob, J. Eur. Ceram. Soc., 28, 2645 (2008).
    14. A. Fujishima, T. N. Rao, D. A. Tryk, J. Photochem. Photobiol. C Photochem. Rev., 1, 1 (2000).
    15. S. K. Hait, S. P. Moulik, Current Science, 82, 1101 (2002).
    16. G. Taguchi, E.A. Elsayed, T. Hsiang, Quality Engineering in Production Systems, New York: McGraw-Hill (1989).
    17. W. Y. Fowlkes, C.M. Creveling, Engineering Methods for Robust Product Design: Using Taguchi Methods in Technology and Product Development, Massachusetts: Addison-Wesley (1995).
    18. P. J. Ross, Taguchi Techniques for Quality Engineering, New York: McGraw-Hill (1996).
    19. Y. Deinega, Z. R. UI berg, L. G. Marochko, V. P. Rudi, V.P. Deni- senko, Zh. Kolloidn.,36, 649 (1974).
    20. F. M. Menger, C. A. Littau, J.Am.Chem.Soc.,113, 1451 (1991).
    21. F. M. Menger, C. E. Portnoy, J. Am. Chem. Soc., 89, 4698 (1967).
    22. F. M. Menger, C. A. Littau, J. Am. Chem. Soc., 115, 10083 (1993).
    23. R.Zana, R. Rueff, Langmuir, 7, 1072 (1991).
    24. R. Zana, J Colloid Interface Sci., 248, 203 (2002).
    25. Y.P. Zhu, A. Masuyama, M. Okahara, J. Am. Oil Chemists Soc., 67, 459 (1990).
    26. A. Espert, R. V. Klitzing, P. Poulin, A. Colin, R. Zana, D. Langevin, Langmuir, 14, 4251 (1998).
    27. Y.P. Zhu, A. Masuyama, M. Okahara,, J. Am. Oil Chemists Soc., 68, 268 (1991).
    28. Y.P. Zhu, A. Masuyama, A. Kirito, M. Okahara, M.J. Rosen, J. Am. Oil Chemists Soc., 69, 626 (1992).
    29. Y.P. Zhu, A. Masuyama, A. Kirito, M. Okahara, J. Am. Oil Chemists Soc., 68, 539 (1991).
    30. F. L. Duivenvoorde, M. C. Feiters, S. J. Gaast, J. B. F. N. Engberts, Langmuir, 13, 3737 (1997).
    31. H. A. van Doren, E. Smits, J. M. Pestman, J. B. F. N. Engberts, R. M. Kellogg, Chem. Soc. Rev., 29, 183 (2000).
    32. F. M. Menger, B. N. A. Mbadugha, J. Am. Chem. Soc., 123, 875 (2001).
    33. Y. P. Zhu, A. Masuyama, Y. Kobata, Y. Nakatsuji, M. Okahara, M. J. Rosen, J. Colloid Interface Sci., 158, 40 (1993).
    34. S. De, V. K. Aswal, P. S. Goyal, S. Bhattacharya, J Phys. Chem. B, 102, 6152 (1998).
    35. M. J. Rosen, J. H. Mathias, L. Davenport, Langmuir, 15, 7340 (1999).
    36. X. P. Liu, J. Feng, L. Zhang, Q. T. Gong, S. Zhao, J. Y. Yu, Colloid Surf. A-Physicochem. Eng. Asp., 362, 39 (2010).
    37. S. Ardizzone, C. L. Bianchi, P. Quagliotto, G. Viscardi, Surf. Interface Anal., 34, 652 (2002).
    38. N. Veronovski, P. Andreozzi, C. L. Mesa, M. Sfiligoj-Smole, V. Ribitsch, Colloid Polym. Sci., 288, 387 (2010).
    39. N. Veronovski, P. Andreozzi, C. L. Mesa, M. Sfiligoj-Smole, Surf. Coat. Technol., 204, 1445 (2010).
    40. M. J. Rosen, Surfactants and Interfacial Phenomena. Third Edition, Chapter 9, New Jersey: John Wiley & Sons, Inc. (2004)
    41. F. Leicester, S. B. Hamilton, and Stephen G. S., Quantitative Chemical Analysis, New York, pp.510 (1964).
    42. M. J. Rosen, J. Solash, J. Am. Oil Chemists Soc., 46, 399(1969).
    43. W.Y. Fowlkes, and C.M. Creveling, Engineering Methods for Robust Product Design: Using Taguchi Methods in Technology and Product Development, Massachusetts: Addison-Wesley (1995)
    44. C. C. Lai, K. M. Chen, Colloid Surf. A-Physicochem. Eng. Asp., 320, 6 (2008).
    45. T. Yoshimura, K. Ishihara, M. Kaji, K. Esumi, Colloid Surf. A-Physicochem. Eng. Asp., 273, 208 (2006).
    46. A. Bendjeriou, D. P. Hartmann, C. Charnay, S. Partyka, Thermochim. Acta, 434, 165 (2005).
    47. T. Yoshimura, K. Ishihara, K. Esumi, J. Colloid Interface Sci., 301, 267 (2006).
    48. K. W. Dillan, J. Am. Oil Chemists Soc., 62, 1144 (1985).
    49. V. Dutschk, K. G. Sabbatovskiy, M. Stolz, K. Grundke, J Colloid Interface Sci., 267, 456 (2003).
    50. R. Sanchez-Vioque, C. L. Bagger, C. Rabiller, J. Gueguen, J. Colloid Interface Sci., 244, 386 (2001).
    51. M. J. Rosen, Surfactants and Interfacial Phenomena. Third Edition, Chapter 7, New Jersey: John Wiley & Sons, Inc.(2004)
    52. H. R. Wang, K. M. Chen, J. Appl. Polym. Sci., 98, 711 (2005).
    53. J. H. Schulman, W. Stoeckenius, L. M. Prince, J. Phys. Chem., 63, 1677 (1959).
    54. Y. Feldman, N. Koziovich, I. Nir, N. Garti, V. Archipov, Z. Idiyatulin, V. Zuev, V. Fedotov, J. Phys. Chem., 100, 3745 (1996).
    55. A. Wiacek, E. Chibowski, Colloid Surf. A-Physicochem. Eng. Asp., 159, 253 (1999).
    56. M. Cai, M. Zhang, P. Ma, J. Dispersion Sci. Technol., 31, 1633 (2010).
    57. K. Holmberg, Novel Surfactants. Marcel Dekker, New York, pp. 242 (1998).
    58. A. M. Ware, J. T. Waghmare, S. A. Momin, Dispersion Sci. Technol., 28, 437 (2007).
    59. R. Sanchez-Vioque, C. L. Bagger, C. Rabiller, J. Gueguen, J.Colloid Interface Sci., 244, 386 (2001).
    60. L. H. Lin, H. J. Liu, J. J. Hwang, Colloid Surf. A-Physicochem. Eng. Asp., 221, 173 (2002).
    61. B. H Zimm, A.George, J. Chem. Phys., 16, 1093 (1948).
    62. Y. Nemoto, H. Funahashi, Ind. Eng. Chem. Prod. Res. Dev., 19, 136 (1980).
    63. J. O. Dvarka, H. Scheibalova, J. Soc. Dyers Colour., 110 ,30 (1994).
    64. K. Tsubone, S. Ghosh, J. Surfactants Deterg., 6, 225 (2003).
    65. S. Gokturk, M. Tuncay, J. Surfactants Deterg., 6, 325 (2003).
    66. A. R. T. Bagha, H. Bahrami, B. Movassagh, M. Arami, F. M. Menger, Dyes and Pigments, 72, 331 (2007).
    67. R. Sanchez-Vioque, C. L. Bagger, C. Rabiller, J. Gueguen, J.Colloid Interface Sci., 244, 386 (2001).
    68. J. Oakes, P. Gratton, Color. Technol., 119, 91 (2003).
    69. H. R. Wang, K. M. Chen, J. Appl. Polym. Sci., 104, 2620 (2007).
    70. K. D. Kim, S. H. Kim, H. T. Kim, Colloid Surf. A-Physicochem. Eng. Asp., 254, 99 (2005).
    71. A. Farzaneh, M. Ehteshamzadeh, M. Gorbani, J. V. Mehrabani, J. Coat. Technol. Res., 7, 547 (2010).
    72. C. H. Ji, N. H. Loh, K. A. Khor, S. B. Tor, Mater. Sci. Eng. A, 311, 74 (2001).
    73. E. S. Thian, N. H. Loh, K.A. Khor, S. B. Tor, Biomaterials, 23, 2927 (2002).
    74. T. C. Chang, Polym. Eng. Sci., 41, 703 (2001).
    75. S. J. Liu, C. H. Lin, Y. C. Wu, Adv. Polym. Technol., 20, 202 (2001).
    76. H. Zollinger, Color Chemistry. Zurich: Switzerland (2003).
    77. D. M. Nunn, The dyeing of Synthetic-Polymer and Acetate Fibers. The Dyers Company Publications Trust, Bradford (1979).
    78. S. Levine, G. P. Dube, Transactions of the Faraday Society 35, 1125 (1940).
    79. B. Derjaguin, L. Landau, Acta Physico. Chemica. URSS 14, 633 (1941).
    80. E. J. W. Verwey, J. Th. G. Overbeek, Theory of the stability of lyophobic colloids, Amsterdam: Elsevier (1948).
    81. W. B. Russel, D. A. Saville, W. R. Schowalter, Colloidal Dispersions, New York: Cambridge University Press (1989).
    82. R. J. Hunter, Zeta Potential in Colloid Science: Principles and Applications. London and New York: Academic Press (1981).

    無法下載圖示 全文公開日期 2016/07/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE