簡易檢索 / 詳目顯示

研究生: 游忠湧
YOU,ZHONG-YONG
論文名稱: 田口法應用於熔噴彈性不織布製程參數最佳化之研究
Taguchi Method Applied in Optimization of Process Parameters of Meltblown Elastic Nonwovens
指導教授: 吳昌謀
Chang-Mou Wu
口試委員: 吳昌謀
Chang-Mou Wu
郭東昊
Dong-Hau Kuo
陳錦江
Jieng-Chiang Chen
安大中
Da-Zhong An
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 126
中文關鍵詞: 田口法熔噴不織布
外文關鍵詞: Taguchi Method, Meltblown Nonwoven
相關次數: 點閱:339下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗使用雙組份熔噴技術製備出熱塑性聚酯/聚氨酯彈性不織布,利用田口實驗規劃法,以不織布的拉伸應力、應變、纖維直徑、及動態彈性回復為品質特性,並以熱風溫度(Heat air temperature)、芯鞘gear pump(GP)的轉速比、熱風風量(Air volume)、以及接收屏距離(Die-to-Collector Distance DCD)為實驗因子,3個水準數,以田口式直交表L9(34)設計實驗,以變異數分析(ANOVA)對每一個單一品質特性做出最佳參數,結果顯示,4個實驗因子中對於四個品質特性綜合考量影響最大者為熱風風量,並利用信賴區間來確認田口實驗的設計;主成分分析法亦用以求取權衡此四種品質特性之最佳參數,其最佳參數組合為熱風溫度310℃、GP轉速(C/S)10rpm/8rpm、風量11m3、DCD為29cm,其各品質特性為MD之拉伸強度為0.118 N/g/m2,拉伸應變為261%,纖維直徑為4.65μm,動態彈性回復為73.27%。最後將最佳參數組合進行熱滾輪加工,探討其熱壓成品布之機械物性、動態彈性回復、不織布孔隙率和透氣度、以及防水與透濕性能。MD方向拉伸強度為0.168 N/g/m2,應變532%,動態彈性回復方面為74.45%,也比較熱壓前與熱壓後之孔隙大小、透氣度、防水測試、以及透濕性能,孔隙由16.13μm變為8.05μm,透氣度由3.5 cm3/cm2/s降為3.0 cm3/cm2/s,防水測試可耐水壓由20.97 mbar提升到 31.68 mbar,透濕性能由15412 g/m2*24hr降為14696 g/m2*24hr。排除矛盾之應變特性,主成分分析法權衡其他三個品質特性,計算出最佳參數為熱風溫度300℃、GP轉速(C/S)10rpm/6rpm、風量11m3、DCD為29cm,MD之拉伸強度為0.145N/g/m2,拉伸應變為213%,纖維直徑為4.29μm,動態彈性回復率為77.41%。


    In this experiment, a thermoplastic polyester/polyurethane elastic nonwoven fabric was prepared using a two-component melt-blowing technique. Using the Taguchi experimental planning method, the tensile stress, strain, fiber diameter, and dynamic elastic recovery of the nonwoven fabric were recovered as quality characteristics, and the hot air temperature ( Heat air temperature, core-sheath gear pump (GP) speed ratio, Air volume, and Die-to-Collector distance (DCD) are experimental factors, and 3 levels are Taguchi type orthogonal arrays. The L9(34) design experiment was conducted with ANOVA to determine the best parameters for each single quality feature. The results showed that among the four experimental factors, the greatest impact on the four quality attributes was the hot air volume. The confidence interval is used to confirm the design of Taguchi experiment; the principal component analysis method is also used to determine the best parameters for weighing these four quality characteristics. The best parameter combination is hot air temperature 310°C, GP speed (C/S) 10rpm/8rpm. The hot air volume was 11m3, and the DCD was 29cm. Its quality characteristics were MD tensile strength of 0.118 N/g/m2, tensile strain of 261%, fiber diameters of 4.65μm, and dynamic elastic recovery of 73.27%. Finally, the optimal parameters are combined for hot roller processing to discuss the mechanical properties, dynamic elastic recovery, porosity and air permeability of the hot-pressed finished fabrics, and waterproof and moisture permeability properties of the hot-pressed finished fabrics. Tensile strength in the MD direction was 0.168 N/g/m2, strain was 532%, dynamic elastic recovery was 74.45%, also compares the pore size before and after hot pressing, air permeability, waterproof test, and moisture permeability, the pores change from 16.13μm to 8.05μm, the air permeability is 3.5 cm3/cm2/s is reduced to 3.0 cm3/cm2/s, the water resistance test can be increased from 20.97 mbar to 31.68 mbar, and the moisture permeability is reduced from 15412 g/m2*24hr to 14696 g/m2*24hr. Excluding the strain characteristics of contradiction, the principal component analysis method weighs the other three quality characteristics, and calculates the best parameters: hot air temperature 300 ° C, GP rotation speed (C / S) 10 rpm / 6 rpm, air volume 11 m3, DCD 29 cm. The tensile strength of MD was 0.145 N/g/m2, the tensile strain was 213%, the fiber diameter was 4.29μm, and the dynamic elastic recovery rate was 77.41%.

    摘要 I Abstract III 圖目錄 IX 表目錄 XIII 第一章 前言 1 1.1 研究背景 1 1.2 研究動機與目的 3 第二章 文獻回顧 5 2.1 熔噴不織布 5 2.2 影響不織布特性之參數 5 2.3 田口法 20 第三章 製程參數最佳化理論 23 3.1 實驗方法概論 23 3.1.1 試誤法 23 3.1.2 一次一因子法 23 3.1.3 全因子法 24 3.1.4 田口式直交表實驗法 24 3.2 田口方法(Taguchi Method) 25 3.2.1 直交表 26 3.2.2 訊號雜訊比 29 3.3 變異數分析 33 3.3.1 標準差 34 3.3.2 變異平方和 34 3.3.3 自由度 35 3.3.4 均方 35 3.3.5 淨平方和 36 3.3.6 F值 36 3.3.7 貢獻度 36 3.3.8 合併誤差 37 3.3.9 信賴區間 37 3.4 主成分分析法 38 3.4.1 原理概述 38 3.4.2 方法應用 39 第四章 實驗 42 4.1 實驗材料與測試儀器 42 4.2 實驗流程 43 4.3 實驗步驟 44 4.3.1材料熱性質測試 44 4.3.2材料熔融指數測定 47 4.3.3 熔噴不織布機台溫度設定 48 4.3.4 不織布表觀形態及纖維直徑 48 4.3.5 拉伸測試 49 4.3.6 彈性回復 49 4.3.7 動態彈性回復 50 4.3.8 熱滾輪加工 51 4.3.9 透氣度 51 4.3.10 孔徑分析 52 4.3.11 防水 53 4.3.11 透濕 53 第五章 結果與討論 54 5.1 田口法實驗規劃 54 5.2 品質特性分析 56 5.2.1 拉伸強度分析 58 5.2.2 拉伸應變分析 61 5.2.3 纖維直徑分析 64 5.2.4 動態彈性回復 67 5.3 彈性回復 70 5.4 品質特性確認實驗 73 5.4.1 拉伸強度 73 5.4.2 拉伸應變 74 5.4.3 纖維直徑 75 5.4.4 動態彈性回復 77 5.5 多重品質評估 78 5.6 最佳參數與熱壓成品布品質特性分析 83 5.7 芯TPU/鞘TPEE不織布 90 5.8 排除矛盾之品質特性 94 第六章 結論 104 參考文獻 106

    1. Larry C.Wadsworth, Youngchul Lee, Effects of Melt-Blowing Process Conditions on Morphological and Mechanical Properties of Polypropylene Webs. Polymer, 1992. 33(6): p. 1200-1209.
    2. Jinqiu Zhang, Fang Hu, Yujun Liu, Lianhua Deng, The Effect of Melt-BlownTechnological Parameter on Structural Performance of Multi-Head SMS Complex Nonwovens. Technical Textiles, 2013. 278: p. 20-23.
    3. Xiao wei Helln, Yong chun Zeng, The Effects of Processing Parameters on Fiber Diameter in Melt Blowing. Journal of Donghua University, 2011. 38(4): p. 367-372.
    4. Ju, S.A., Discussion on the Research and Research of Melt-Blown Elastic Nonwoven Fabric. Technological pioneers, 2014. 1: p. 153.
    5. Yayuan Han, Yaojun Li, Dajun Chen, Preparation of Meltblown Polyurethane Elastic Nonwovens and Their Mechanical Properties. Journal of Donghua University, 2002. 28(4): p. 84-87.
    6. Bingxuan Ni , P.Z., Ruitian Zhu, Xiaoyan Gao, Xiangqin Wang, Study on filtration characteristics of melt-blown polypropylene nonwoven filter for mask. China Synthetic Fiber Industry, 2015. 38(5): p. 72-75.
    7. Aijin Zhao, B.w.C., Wei li Zhang, Hua ze Chen, Ke qi Xing, Development of PP/PET Bicomponent Melt-Blown Thermal. Chemical Fiber&Textile Technology, 2011. 40(1): p. 6-9.
    8. Safranski, D.L., et al., Thermo-mechanical behavior and structure of melt blown shape-memory polyurethane nonwovens. J Mech Behav Biomed Mater, 2016. 62: p. 545-555.
    9. Shi. B., Palfery D., Enhanced Mineralization of PLA Meltblown Materials Due to Plasticization. Journal of Polymers and the Environment, 2010. 18(2): p. 122-127.
    10. Christopher J. Ellison, Alhad Phatak, David W. Giles, Christopher W. Macosko, Frank S. Bates., Melt Blown Nanofibers: Fiber Diameter Distributions and Onset of Fiber Breakup. Polymer, 2007. 48(11): p. 3306-3316.
    11. Bo, Z., Nonwovens: Melt Blowing Non-Woven Prediction. Filtration / Separation, 2014. 51(6): p. 40-41.
    12. Feng, J., Preparation and Properties of Poly(lactic acid) Fiber Melt Blown Non-Woven Disordered Mats. Materials Letters, 2017. 189: p. 180-183.
    13. Lei Shi, Wei Min Kang, Xu Pin Zhuang, Bo Wen Cheng, Preparation and Properties of PP Melt-Blown Nonwoven Wadding Blended PET Crimp Fibers. Advanced Materials Research, 2011. 332-334: p. 1287-1290.
    14. Wang, X., Qiming Zhao, Effect of Processing Parameters on the Uniformity of Adhesive Meltblown Web. Polymer Engineering & Science, 2008. 48(11): p. 2143-2146.
    15. Mohammad Abouelreesh Hassan, Bong Yeol Yeom, Arnold Wilkie, Behnam Pourdeyhimi, Saad A.Khan, Fabrication of Nanofiber Meltblown Membranes and Their Filtration Properties. Journal of Membrane Science, 2013. 427: p. 336-344.
    16. Han, W., G.S. Bhat, X. Wang, Investigation of Nanofiber Breakup in the Melt-Blowing Process. Industrial & Engineering Chemistry Research, 2016. 55(11): p. 3150-3156.
    17. Yesil, Y., Effet of Air Quenching on Characteristics of Thermoplastic Polyurethane Meltblown Nonwoven. Textile & Apparel, 2015. 25(3): p. p236-245
    18. Rajkishore NayakIlias, Louis Kyratzis, Yen Bach Truong Rajiv Padhye, Lyndon Arnold, Gary Peeters, Mike O’Shea, Lance Nichols, Fabrication and Characterisation of Polypropylene Nanofibres by Meltblowing Process Using Different Fluids. Journal of Materials Science, 2012. 48(1): p. 273-281.
    19. Chung, C., Kumar S., Onset of Whipping in the Melt Blowing Process. Journal of Non-Newtonian Fluid Mechanics, 2013. 192: p. 37-47.
    20. Hammonds, R.L., Gazzola W.H., Benson R.S., Physical and Thermal Characterization of Polylactic Acid Meltblown Nonwovens. Journal of Applied Polymer Science, 2014. 131(15): p. n/a-n/a.
    21. Nayak, Rajkishore, Kyratzis, Ilias Louis, Truong, Yen Bach, Padhye Rajiv, Arnold Lyndon, Structural and Mechanical Properties of Polypropylene Nanofibres Fabricated by Meltblowing. The Journal of The Textile Institute, 2014. 106(6): p. 629-640.
    22. Xie, S., Zeng Y., Turbulent Air Flow Field and Fiber Whipping Motion in the Melt Blowing Process: Experimental Study. Industrial & Engineering Chemistry Research, 2012. 51(14): p. 5346-5352.
    23. Rohit Uppal, Gajanan Bhat, Chris Eash, Kokouvi Akato, Meltblown Nanofiber Media for Enhanced Quality Factor. Fibers and Polymers, 2013. 14(4): p. 660-668.
    24. Srinivas S., Cheng C.Y., Dharmarajan N., Racine G., Elastic Nonwoven Fabrics from Polyolefin Elastomers. ExxonMobil Chemical, 5200 Bayway Drive, Baytown, TX 77520 2005.
    25. Yayuan Hart, Y.L., Dajun Chen, Preparation of Meltblown Polyurethane Elastic Nonwovens and Their Mechanical Properties. Journal of Dong Hua University, 2002. 28(4): p. 84-87.
    26. Chang Chiun Huang, Tsann Tay Tang, Parameter optimization in melt spinning by neural networks and genetic algorithms. The International Journal of Advanced Manufacturing Technology, 2005. 27(11-12): p. 1113-1118.
    27. C. F. Kuo, W.L.L., C. C. Fang, A Study on the Property Modification Analysis and Process Parameter Optimization Design of Polylactic Acid Composite Materials. Journal of the Hwa Gang Textile, 2014. 21(3): p. 118-126.
    28. Patra, S.N., Easteal A.J., Bhattacharyya D., Parametric study of manufacturing poly(lactic) acid nanofibrous mat by electrospinning. Journal of Materials Science, 2008. 44(2): p. 647-654.
    29. Julie Z. Zhang, Joseph C. Chen, E. Daniel Kirby, Surface roughness optimization in an end-milling operation using the Taguchi design method. Journal of Materials Processing Technology, 2007. 184(1–3): p. 233-239.
    30. Jeyapaul, R., Shahabudeen P., Krishnaiah K., Quality management research by considering multi-response problems in the Taguchi method – a review. The International Journal of Advanced Manufacturing Technology, 2004. 26(11-12): p. 1331-1337.
    31. F.C. Wu, C.C. Chyu, Optimization of correlated multiple quality characteristics robust design using principal component analysis. Journal of Manufacturing Systems, 2004. 23(2): p. 134-143.
    32. Pearson, K., On Lines and Planes of Closest Fit to Systems of Points in Space. Philosophical Magazine, 1901. 2: p. 559-572.
    33. Abdi, H., Williams L.J., Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2010. 2(4): p. 433-459.

    無法下載圖示 全文公開日期 2023/08/22 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE