簡易檢索 / 詳目顯示

研究生: 王任群
Ren-jing Wang
論文名稱: 液滴撞擊石墨和聚碳酯酸板之氣泡捕捉行為研究
Air Bubble Entrapment for Water Drop Impinging on Graphite and Polycarbonate Surfaces
指導教授: 林析右
Shi-yow Lin
口試委員: 江佳穎
Chia-ying Chiang
楊明偉
none
張鴻奇
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 51
中文關鍵詞: 石墨板聚碳酯酸板平板粗糙度氣泡捕捉機制
外文關鍵詞: Graphite, Polycarbonate, Roughness, Bubble entrapment mechanism
相關次數: 點閱:196下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分為兩部份,第一部份觀察純水液滴撞擊具不同疏水性(90o≤θ≤160o)之石墨(Graphite)板的氣泡捕捉行為;第二部份為純水液滴撞擊不同粗糙度(15≤Rq≤1159nm)之聚碳酯酸(Polycarbonate)板的氣泡捕捉行為。使用高速攝影機拍攝純水液滴撞擊平板後的側視圖連續影像,並在45o角拍攝液滴撞擊平板的俯視圖,來觀察撞擊後之氣泡捕捉行為。
    純水-石墨系統中,藉由控制不同液滴大小(1.93≤D0≤4.90 mm)和改變不同液滴撞擊速度(0.11≤Vi≤0.74 m/s),獲知當石墨平板越疏水,越易發生氣泡捕捉,被捕捉的氣泡在狀態穩定後,會形成一個近似於圓形的氣泡。純水-聚碳酯酸板系統中,藉控制不同液滴大小(2.13≤D0≤3.87 mm)和改變不同液滴撞擊速度(0.14≤Vi≤0.59 m/s),獲知氣泡捕捉較易發生在粗糙度較大的聚碳酯酸板上。在固定液滴大小和基板粗糙度時,有兩段氣泡捕捉的速度區間;平板粗糙度越大,其氣泡捕捉越易呈兩段速度區間。藉由分析捕捉的氣泡大小,得知於粗糙度越大時其捕捉之氣泡越大。另外在純水-聚碳酯酸板系統中發現了三個不同於以往在純水-parafilm和純水-石墨系統中的氣泡捕捉機制。


    The phenomenon of bubble entrapment was studied for water drop impinging on graphite and polycarbonate substrates in this work. Four graphite substrates with advancing contact angle (90, 120, 140 and 160o and eight PC substrates with roughness, 15<Rg <1159 nm, were used in this study. Two high speed CD cameras with 6770 fps were utilized for studying the relaxation of drop morphology: one for side view and the other for top view images.
    In the water drop impinging on graphite experiment, droplet size (1.93≤D0≤4.90 mm) and impact velocity (0.11≤Vi≤0.74 m/s) were adjusted. Bubble entrapment occurred more frequently for a more hydrophobic graphite surface. At a fixed drop size, bubble entrapment takes place only in a limited range of impact velocity.
    In the experiment of water drop impinging on PC substrate, drop size (2.13≤D0≤3.87 mm) and impact velocities (0.14≤Vi≤0.59 m/s) were also adjusted. Bubble entrapment took place more frequently on a rough PC substrate. At a fixed drop size, bubble entrapment was observed in one or two ranges of impact velocity. The two-range of bubble entrapment occurred more on the rough PC substrates. Beside, three new bubble formation mechanisms were observed in the water-PC substrate system.

    摘要 I 英文摘要 II 致謝 III 目錄 IV 表目錄 VI 圖目錄 VII 符號表 IX 一、前言 1 二、文獻回顧 2 2.1液滴撞擊的控制參數 2 2.2液滴撞擊的形態的變化 3 2.3液滴撞擊的氣泡捕捉機制 6 三、實驗設備 9 3.1 主要儀器設備 9 3.2 其它儀器設備 11 3.3 儀器校正 11 3.4 實驗藥品 12 3.5 不同親疏水性石墨平板製程 12 3.6 不同粗糙度聚碳酯酸板製程 13 3.6 實驗條件選定 14 四、實驗結果 16 4.1液滴撞擊不同疏水性材質後捕捉氣泡行為探討 17 4.1.1純水液滴撞擊不同親疏水性石墨平板之氣泡捕捉 17 4.1.2純水液滴撞擊不同親疏水性石墨平板之氣泡捕捉機制探討 20 4.2液滴撞擊不同粗糙度材質後捕捉氣泡行為探討 29 4.2.1純水液滴撞擊不同粗糙度聚碳酯酸板之氣泡捕捉 29 4.2.2純水液滴撞擊不同聚碳酯酸板之氣泡捕捉機制探討 36 4.2.3純水液滴撞擊聚碳酯酸板之行為探討 45 五、結論 49 六、參考文獻 50

    1. M.Rein, “Phenomena of liquid drop impact on solid and liquid surfaces” ,”Fluid Dynamic Research,12,61-93 (1993)
    2. D.B. van Dam, C.L. Clerc, “Experimental study of the impact of an ink-jet printed droplet on a solid substrate,” Phys. Fluids, 16, 3403 (2004)
    3. D.B. Smith, S.D. Askew, W.H. Morris, D.R. Shaw, M. Boyette, “Droplet size and leaf morphology effects on pesticide spray deposition, “ASAE 2000, 43,255-259 (2001)
    4. T.Sasaki, H.Wada and T.Morikawa,” Suppression of micro-bubbles in photoresist coating by step Dynamic Coating” IEEE,329-332 (2001)
    5. M. Morcillo, J. Simanacas, J. Bastidas, S. Feliu, C . Blanco and F. Camon “Comparison of laboratory tests and outdoor tests of paint coatings for atmospheric exposure.” in Polymeric Materials for Corrosion control, American Chemical Society (1986)
    6. L .Brian. Scheller and D.W. Bousfield, “Newtonian Drop Impact with a Solid Surface” AIChE J. 41, 1357 (1995)
    7. M. Pasandideh-Fard, Y. M. Qiao, S. Chandra, J. Mostaghimi, “Capillary effects during droplet impact on a solid surface,” Phys. Fluids, 8, 650 (1996)
    8. K.P. Gatne, M. A. Jog, R. M. Manglik, “Surfactant-induced modification of low weber number droplet impact dynamics,” Langmuir, 25, 8122 (2009)
    9. M. Aytouna, D. Bartolo, G. Wegdam, D. Bonn, S. Rafai, “Impact dynamics of surfactant laden drops: Dynamic surface tension effects,” Exp. Fluids, 48, 49 (2010)
    10. J. J. Cooper-White, R.C. Crooks, K. Chockalingam, D.V. Boger, “Dynamics of polymer - surfactant complexes: Elongational properties and drop impact behavior,” Ind. Eng. Chem. Res., 41, 6443 (2002)
    11. S.D. Aziz, S. Chandra, “Impact, recoil and splashing of molten metal droplets,” Int. J. Heat Mass Tran., 43, 2841 (2000)
    12. D.A. Gorham, “Anomalous behaviour of high velocity oblique liquid impact,” Wear, 41, 2 (1977)
    13. D. Bartolo, F. Bouamrirene, E. Verneuil, A. Buguin, P. Silberzan, S. Moulinet, “Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces,” Europhys. Lett., 74, 299 (2006)
    14. B.S. Kang, D.H. Lee, “ On the dynamic behavior of a liquid droplet impacting upon an inclined heated surface,” Exp. Fluids., 29, 380 (2000)
    15. R. Rioboo, M. Voue, A. Vaillant, J. De Coninck, “ Drop impact on porous superhydrophobic polymer surfaces,”Langmuir, 24, 14074 (2008)
    16. K.Range, Franc﹐ois Feuillebois, “Influence of Surface Roughness on Liquid Drop Impact” Colloid and interface science 203, 16-30 (1998)
    17. R.E. Pepper, L. Courbin, “Splashing on elastic membranes: The importance of early-time dynamics,” Phys. Fluids, 20, 8 (2008)
    18. R. Rioboo, M. Voue, H. Adao, J. Conti, A. Vaillant, D. Eveno, D. Coninck, “Drop impact on soft surfaces: Beyond the static contact angles,” Langmuir, 26, 4873 (2010)
    19. R. Rioboo, M. Marengo, C. Tropea, “Time evolution of liquid drop impact onto solid, dry surfaces,” Exp. Fluids, 33, 112 (2002)
    20. R. Rioboo, C. Tropea, “Outcomes from a drop impact on solid surfaces,” Atomization Spray, 11, 155 (2001)
    21. T. Mao, D.C.S. Kuhn, H. Tran, “Spread and rebound of liquid droplets upon impact on flat surfaces,” AIChE J., 43, 2169 (1997)
    22. F.T. Dodge, “The spreading of liquid droplets on solid surfaces,” J. Colloid Interface Sci., 121, 154 (1988)
    23. H. Park, W.W. Carr, J. Zhu, J.F. Morris, “Single drop impaction on a solid surface,” AIChE J., 49, 2461 (2003)
    24. S. Vafaeia, M.Z. Podowskia, “Analysis of the relationship between liquid droplet size and contact angle,” Adv. Colloid Interface Sci., 113, 133 (2005)
    25. C. Ukiwe, D.Y. Kwok, “On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces,” Langmuir, 21, 666 (2005)
    26. H.C. Pumphrey, P.A. Elmore, “Entrainment of bubbles by drop impacts,” J. Fluid Mech., 220, 539 (1990)
    27. P.A. Elmore, G.L. Chahine, H.N. Oguz, “Cavity and flow measurements of reproducible bubble entrainment following drop impacts,” Exp. Fluids, 31, 664 (2001)
    28. V. Mehdi-Nejad, J. Mostaghimi, and S. Chandra,” Air bubble entrapment under an impacting droplet” Phys. Fluids 15, 173 (2003)
    29. J.J. Huang, C. Shu, Y.T. Chew, “Lattice Boltzmann study of bubble entrapment during droplet impact,” Int. J. Numer. Meth. Fluids, 65, 655 (2011)
    30. L. Chen, Z. Xiao, C.H. Chan, Y. Lee, Z. Li, “A comparative study of droplet impact dynamics on a dual-scaled superhydrophobic surface and lotus leaf,” Appl. Surf. Sci., 257, 8857 (2011)
    31. P. Tsai, S. Pacheco, C. Pirat, L. Lefferts, D. Lohse, “Drop impact upon micro- and nanostructured superhydrophobic surfaces,” Langmuir, 25, 12293 (2009)
    32. M.J. Wang, Y.L. Hung, S.Y. Lin, “The observation of air bubble entrapment for water droplets impinging on parafilm surface,” J. Taiwan Inst. Chem. Eng., 43, 517 (2012)
    33. Y.L. Hung, M.-J. Wang, J-H. Huang, S.Y. Lin, A study on the impact velocity and drop size for the occurance of entrapped air bubbles – Water on parafilm, Exp.Therm. fluid Sci.48102-109 (2013)
    34. 蕭慕柔,「電解剝離法之石墨表面性質探討」,碩士論文,國立中央大學,桃園 (2012)
    35. P.G. Pittoni, H.K,Tsao ,Y.L. Hung, J.W. Huang, S.Y.Lin Impingement dynamics of water drops onto four graphite morphologies: From triple line recoil to pinning. J Colloid Interface Sci;417:256–63 (2014).
    36. P .Tsai, S.Pacheco, C.Pirat, L.Lefferts, D. Lohse. Drop impact upon micro- and nanostructured superhydrophobic surfaces. Langmuir;25:12293–8 (2009).
    37. L.Chen, Z.Xiao, P.C. Chan, Y .Lee, Z .Li. A comparative study of droplet impact dynamics on a dual-scaled superhydrophobic surface and lotus leaf. Appl Surf Sci;257:8857–63 (2011).

    QR CODE