簡易檢索 / 詳目顯示

研究生: 林冠毅
Guan-Yi Lin
論文名稱: 氫氣處理二氧化鈰奈米線修飾石墨氈應用於高效釩液流電池電極之研究
Hydrogen-Treated CeO2 Nanowires Decorated Graphite felt as a High Performance Electrode for Vanadium Redox Flow Batteries
指導教授: 王丞浩
Chen-Hao Wang
口試委員: 王冠文
Kuan-Wen Wang
陳燦耀
Tsan-Yao Chen
郭俞麟
Yu-Lin Kuo
洪逸民
I-Ming Hung
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 97
中文關鍵詞: 儲能系統釩液流電池金屬氧化物修飾電極
外文關鍵詞: Energy storage system, Vanadium redox flow battery, Metal oxide, Decorated electrode
相關次數: 點閱:260下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 釩液流電池大多選用大面積、高導電和多孔結構的碳材作為電
    極,而石墨氈為符合此需求的材料之一。然而,石墨氈材料面臨電化
    學活性不足及可逆性較差等問題,嚴重影響全電池效率的表現。因此
    本研究將以二氧化鈰奈米線修飾電極為出發,利用奈米線形貌與氫
    氣處理增加電極之電化學活性,期能藉由奈米線形貌之高比表面積
    提升反應面積再透過氫氣還原作用處理,製造氧空缺做為反應之活
    性點,催化釩離子反應。
    本研究將利用二氧化鈰之奈米線混合於石墨氈上,並在高溫爐
    管中利用氫氣處理,製造氧空缺,增加二氧化鈰之電化學活性。透過
    多種材料分析技術與電化學量測,分析氫氣處理後之性質變化與應
    用在釩液流電池中表現出效能之關聯性。
    關鍵詞:儲能系統、釩液流電池、金屬氧


    Carbon-based materials with large surface area, high conductivity,
    and porous structure are used as the electrode in vanadium redox flow
    battery (VRFB). However, the graphite felt has a low energy efficiency
    problem due to its insufficient electrochemical activity and poor
    reversibility. In order to solve this problem, we decorated electrode by
    cerium oxide nanowires and treated it with hydrogen to increase the
    electrochemical activity of the electrode. The high specific surface area of
    the nanowires morphology was used to increase the reaction
    area .Moreover, a part of the oxygen from cerium oxide was reduced byhydrogen treatment to produce oxygen vacancies.
    In this study, the nanowires of cerium oxide were mixed with carbon
    felts and treated with hydrogen in high temperature to increase the
    electrochemical activity of cerium oxide. Through variety of material
    analysis techniques and electrochemical measurements, we analyzed the
    relation between the hydrogen treatment and the performance in vanadium
    flow batteries.

    目錄 中文摘要 ............................................................................................ I ABSTRACT ...................................................................................... II 誌謝 .................................................................................................. III 目錄 ................................................................................................... V 圖目錄 ............................................................................................. VII 表目錄 ............................................................................................... X 第一章 緒論.................................................................................... 11 1-1 前言 ...................................................................................... 11 1-2 全釩液流電池介紹 ................................................................ 16 1-3 全釩液流電池特性分析......................................................... 23 1-3-1 全釩液流電池作為大型儲能系統所具備的優勢 ............ 23 1-3-2 全釩液流電池所面臨的挑戰 .......................................... 24 1-4 研究動機與目的 .................................................................... 27 第二章 釩液流電池研究發展現況 .................................................. 29 2-1 國內學者研究 ....................................................................... 29 2-2 國外學者研究 ....................................................................... 32 2-2-1 奈米金屬顆粒披覆電極 ................................................. 33 2-2-2 官能基化碳基電極 ......................................................... 39 2-2-3 氮摻雜碳基電極............................................................. 43 2-2-4 微結構改質 .................................................................... 45 第三章 實驗方法與步驟 ................................................................. 49 3-1 實驗規劃................................................................................ 49 3-2 實驗步驟 ............................................................................... 52 第四章 結果與討論....................................................................... 56 4-1 二氧化鈰氫處理活化機制與預期效果................................. 56 4-2 SEM表面影像分析 ............................................................. 58 4-3 XRD 分析 ............................................................................ 60 4-5 拉曼光譜分析 ...................................................................... 65 4-6 UV 吸收光譜分析................................................................ 67 4-7 XPS 成分分析...................................................................... 69 4-8 電化學分析–循環伏安法 ..................................................... 73 4-9 EIS 電化學阻抗分析 ........................................................... 75 4-10 全電池充放電測試............................................................... 80 第五章 主要發現與結論 ................................................................. 86 參考文獻 ......................................................................................... 88

    1] H. Zhang, S. Liang, B. Sun, X. Yang, X. Wu, T. Yang, A hybrid redox flow
    battery with high energy efficiency using a low cost sandwiched membrane as a
    separator and LiMn2O4 as a cathode. Journal of Materials Chemistry A, 1 (2013)
    14476.
    [2] T.U. Daim, X. Li, J. Kim, S. Simms, Evaluation of energy storage technologies for
    integration with renewable electricity: Quantifying expert opinions. Environmental
    Innovation and Societal Transitions, 3 (2012) 29-49.
    [3] C.J. Rydh, Environmental assessment of vanadium redox and lead-acid batteries
    for stationary energy storage. J. Power Sources, 80 (1999) 21-29.
    [4] S. Rubenwolf, O. Strohmeier, A. Kloke, S. Kerzenmacher, R. Zengerle, F. von
    Stetten, Carbon electrodes for direct electron transfer type laccase cathodes
    investigated by current density-cathode potential behavior. Biosens Bioelectron, 26
    (2010) 841-845.
    [5] N.A.a.S.A.W. DC, Flow Cell Development and Demonstration. NASA TM-
    97067, (1979).
    [6] E. Sum, M. Rychcik, M. Skyllas-kazacos, Investigation of the V(V)/V(IV) system
    for use in the positive half-cell of a redox battery. Journal of Power Sources, 16
    (1985) 85-95.
    [7] E. Sum, M. Skyllas-Kazacos, A study of the V(II)/V(III) redox couple for redox
    flow cell applications. J. Power Sources, 15 (1985) 179-190.
    [8] P. Alotto, M. Guarnieri, F. Moro, Redox flow batteries for the storage of
    renewable energy: A review. Renewable and Sustainable Energy Reviews, 29 (2014)
    325-335.
    [9] C. Jizhong, X. Ziqiang, L. Bei, Research on the characteristics of the vanadium
    redox-flow battery in power systems applications. Journal of Power Sources, 241
    (2013) 396-399.
    [10] C. Fabjan, J. Garche, B. Harrer, L. Jörissen, C. Kolbeck, F. Philippi, G. Tomazic,
    F. Wagner, The vanadium redox-battery: an efficient storage unit for photovoltaic
    systems. Electrochim. Acta, 47 (2001) 825-831.
    [11] M. Vijayakumar, S.D. Burton, C. Huang, L. Li, Z. Yang, G.L. Graff, J. Liu, J.
    Hu, M. Skyllas-Kazacos, Nuclear magnetic resonance studies on vanadium(IV)
    electrolyte solutions for vanadium redox flow battery. Journal of Power Sources, 195
    (2010) 7709-7717.
    [12] M. Gattrell, J. Qian, C. Stewart, P. Graham, B. MacDougall, The electrochemical
    reduction of VO2+ in acidic solution at high overpotentials. Electrochimica Acta, 51
    (2005) 395-407
    [13] M. Park, Y.-J. Jung, J. Kim, H.I. Lee, J. Cho, Synergistic effect of carbon
    nanofiber/nanotube composite catalyst on carbon felt electrode for high-performance
    all-vanadium redox flow battery. Nano Lett., 13 (2013) 4833-4839.
    [14] J. Jin, X. Fu, Q. Liu, Y. Liu, Z. Wei, K. Niu, J. Zhang, Identifying the Active Site
    in Nitrogen-Doped Graphene for the VO2+/VO2
    + Redox Reaction. ACS Nano, 7
    (2013) 4764-4773.
    [15] D. Chen, M.A. Hickner, S. Wang, J. Pan, M. Xiao, Y. Meng, Directly fluorinated
    polyaromatic composite membranes for vanadium redox flow batteries. Journal of
    Membrane Science, 415-416 (2012) 139-144.
    [16] H. Chen, T.N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding, Progress in electrical
    energy storage system: A critical review. Progress in Natural Science, 19 (2009) 291-
    312.
    [17] C. Ding, H. Zhang, X. Li, T. Liu, F. Xing, Vanadium Flow Battery for Energy
    Storage: Prospects and Challenges. The Journal of Physical Chemistry Letters, 4
    (2013) 1281-1294.
    [18] M. Skyllas‐Kazacos, C. Menictas, M. Kazacos, Thermal Stability of
    Concentrated V(V) Electrolytes in the Vanadium Redox Cell. J. Electrochem. Soc.,
    143 (1996) L86-L88.
    [19] F. Rahman, M. Skyllas-Kazacos, Solubility of vanadyl sulfate in concentrated
    sulfuric acid solutions. J. Power Sources, 72 (1998) 105-110.
    [20] G. Oriji, Y. Katayama, T. Miura, Investigation on V(IV)/V(V) species in a
    vanadium redox flow battery. Electrochimica Acta, 49 (2004) 3091-3095.
    [21] B. Dunn, H. Kamath, J.-M. Tarascon, Electrical Energy Storage for the Grid: A
    Battery of Choices. Science, 334 (2011) 928-935.
    [22] H. Zhou, J. Xi, Z. Li, Z. Zhang, L. Yu, L. Liu, X. Qiu, L. Chen, CeO2 decorated
    graphite felt as a high-performance electrode for vanadium redox flow batteries. RSC
    Adv., 4 (2014) 61912-61918.
    [23] S. Cong, Y. Yuan, Z. Chen, J. Hou, M. Yang, Y. Su, Y. Zhang, L. Li, Q. Li, F.
    Geng, Z. Zhao, Noble metal-comparable SERS enhancement from semiconducting
    metal oxides by making oxygen vacancies. Nat Commun, 6 (2015) 7800.
    [24] H.-M. Tsai, S.-Y. Yang, C.-C.M. Ma, X. Xie, Preparation and Electrochemical
    Properties of Graphene-Modified Electrodes for All-Vanadium Redox Flow Batteries.
    Electroanalysis, 23 (2011) 2139-2143.
    [25] H.-M. Tsai, S.-J. Yang, C.-C.M. Ma, X. Xie, Preparation and electrochemical
    activities of iridium-decorated graphene as the electrode for all-vanadium redox flow
    batteries. Electrochimica Acta, 77 (2012) 232-236.
    [26] T.M. Tseng, R.H. Huang, C.Y. Huang, C.C. Liu, K.L. Hsueh, F.S. Shieu, CarbonFelt Coated with Titanium Dioxide/Carbon Black Composite as Negative Electrode
    for Vanadium Redox Flow Battery. Journal of the Electrochemical Society, 161
    (2014) A1132-A1138.
    [27] T.-C. Chang, J.-P. Zhang, Y.-K. Fuh, Electrical, mechanical and morphological
    properties of compressed carbon felt electrodes in vanadium redox flow battery. J.
    Power Sources, 245 (2014) 66-75.
    [28] J.-Z. Chen, W.-Y. Liao, W.-Y. Hsieh, C.-C. Hsu, Y.-S. Chen, All-vanadium
    redox flow batteries with graphite felt electrodes treated by atmospheric pressure
    plasma jets. Journal of Power Sources, 274 (2015) 894-898.
    [29] D. Chen, M.A. Hickner, E. Agar, E.C. Kumbur, Optimized Anion Exchange
    Membranes for Vanadium Redox Flow Batteries. ACS Applied Materials &
    Interfaces, 5 (2013) 7559-7566.
    [30] A. Parasuraman, T.M. Lim, C. Menictas, M. Skyllas-Kazacos, Review of
    material research and development for vanadium redox flow battery applicat ions.
    Electrochimica Acta, 101 (2013) 27-40.
    [31] C. Yao, H. Zhang, T. Liu, X. Li, Z. Liu, Carbon paper coated with supported
    tungsten trioxide as novel electrode for all-vanadium flow battery. Journal of Power
    Sources, 218 (2012) 455-461.
    [32] Y. Shen, H. Xu, P. Xu, X. Wu, Y. Dong, L. Lu, Electrochemical catalytic activity
    of tungsten trioxide- modified graphite felt toward VO2+/VO2
    + redox reaction.
    Electrochimica Acta, 132 (2014) 37-41.
    [33] X. Wu, H. Xu, L. Lu, H. Zhao, J. Fu, Y. Shen, P. Xu, Y. Dong, PbO2-modified
    graphite felt as the positive electrode for an all-vanadium redox flow battery. Journal
    of Power Sources, 250 (2014) 274-278.
    [34] Z. González, A. Sánchez, C. Blanco, M. Granda, R. Menéndez, R. Santamaría,
    Enhanced performance of a Bi-modified graphite felt as the positive electrode of a
    vanadium redox flow battery. Electrochemistry Communications, 13 (2011) 1379-
    1382.
    [35] B. Sun, M. Skyllas-Kazakos, Chemical modification and electrochemical
    behaviour of graphite fibre in acidic vanadium solution. Electrochim. Acta, 36 (1991)
    513-517.
    [36] W.H. Wang, X.D. Wang, Investigation of Ir-modified carbon felt as the positive
    electrode of an all-vanadium redox flow battery. Electrochimica Acta, 52 (2007)
    6755-6762.
    [37] M. Rychcik, M. Skyllas-Kazacos, EVALUATION OF ELECTRODE
    MATERIALS FOR VANADIUM REDOX CELL. J. Power Sources, 19 (1987) 45-
    54.
    [38] J. Han, H. Yoo, M. Kim, G. Lee, J. Choi, High-performance bipolar plate of thin
    IrOx-coated TiO2nanotubes in vanadium redox flow batteries. Catal. Today, 295
    (2017) 132-139.
    [39] K.J. Kim, M.-S. Park, J.-H. Kim, U. Hwang, N.J. Lee, G. Jeong, Y.-J. Kim,
    Novel catalytic effects of Mn3O4 for all vanadium redox flow batteries. Chem.
    Commun., 48 (2012) 5455-5457.
    [40] Z. He, L. Dai, S. Liu, L. Wang, C. Li, Mn3O4 anchored on carbon nanotubes as
    an electrode reaction catalyst of V(IV)/V(V) couple for vanadium redox flow
    batteries. Electrochimica Acta, 176 (2015) 1434-1440.
    [41] A. Di Blasi, C. Busaccaa, O. Di Blasia, N. Briguglio, G. Squadrito, V.
    Antonuccia, Synthesis of flexible electrodes based on electrospun carbon nanofibers
    with Mn3O4nanoparticles for vanadium redox flow battery application. Applied
    Energy, 190 (2017) 165-171.
    [42] B. Li, M. Gu, Z. Nie, X. Wei, C. Wang, V. Sprenkle, W. Wang, Nanorod
    niobium oxide as powerful catalysts for an all vanadium redox flow battery. Nano
    Lett., 14 (2014) 158-165.
    [43] J. Winsberg, T. Hagemann, T. Janoschka, M.D. Hager, U.S. Schubert, Redox-
    Flow Batteries: From Metals to Organic Redox-Active Materials. Angew Chem Int
    Ed Engl, 56 (2017) 686-711.
    [44] H.T. Thu Pham, C. Jo, J. Lee, Y. Kwon, MoO2 nanocrystals interconnected on
    mesocellular carbon foam as a powerful catalyst for vanadium redox flow battery.
    RSC Adv., 6 (2016) 17574-17582.
    [45] J. Maruyama, T. Hasegawa, S. Iwasaki, T. Fukuhara, Y. Orikasa, Y. Uchimoto,
    Carbonaceous thin film coating with Fe–N4 site for enhancement of dioxovanadium
    ion reduction. Journal of Power Sources, 324 (2016) 521-527.
    [46] A. Di Blasi, O. Di Blasi, N. Briguglio, A.S. Aricò, D. Sebastián, M.J. Lázaro, G.
    Monforte, V. Antonucci, Investigation of several graphite-based electrodes for
    vanadium redox flow cell. Journal of Power Sources, 227 (2013) 15-23.
    [47] L. Yue, W. Li, F. Sun, L. Zhao, L. Xing, Highly hydroxylated carbon fibres as
    electrode materials of all-vanadium redox flow battery. Carbon, 48 (2010) 3079-3090.
    [48] W. Li, J. Liu, C. Yan, Graphite–graphite oxide composite electrode for vanadium
    redox flow battery. Electrochimica Acta, 56 (2011) 5290-5294.
    [49] X. Wu, H. Xu, P. Xu, Y. Shen, L. Lu, J. Shi, J. Fu, H. Zhao, Microwave-treated
    graphite felt as the positive electrode for all-vanadium redox flow battery. Journal of
    Power Sources, 263 (2014) 104-109.
    [50] K.J. Kim, S.W. Lee, T. Yim, J.G. Kim, J.W. Choi, J.H. Kim, M.S. Park, Y.J.
    Kim, A new strategy for integrating abundant oxygen functional groups into carbon
    felt electrode for vanadium redox flow batteries. Sci Rep, 4 (2014) 6906.
    [51] <Liu-2016-Electrochemical behavior of vanadium.pdf>.
    [52] A. Di Blasi, O. Di Blasi, N. Briguglio, A.S. Arico, D. Sebastian, M.J. Lazaro, G.
    Monforte, V. Antonucci, Investigation of several graphite-based electrodes for
    vanadium redox flow cell. 227 (2012) 15-23.
    [53] X. Wang, X. Li, L. Zhang, Y. Yoon, P.K. Weber, H. Wang, J. Guo, H. Dai, NDoping
    of Graphene Through Electrothermal Reactions with Ammonia. Science, 324
    (2009) 768-771.
    [54] A.L.M. Reddy, A. Srivastava, S.R. Gowda, H. Gullapalli, M. Dubey, P.M.
    Ajayan, Synthesis Of Nitrogen-Doped Graphene Films For Lithium Battery
    Application. ACS Nano, 4 (2010) 6337-6342.
    [55] Y. Wang, Y. Shao, D.W. Matson, J. Li, Y. Lin, Nitrogen-Doped Graphene and
    Its Application in Electrochemical Biosensing. ACS Nano, 4 (2010) 1790-1798.
    [56] V. Nallathambi, J.-W. Lee, S.P. Kumaraguru, G. Wu, B.N. Popov, Development
    of high performance carbon composite catalyst for oxygen reduction reaction in PEM
    Proton Exchange Membrane fuel cells. J. Power Sources, 183 (2008) 34-42.
    [57] S. Maldonado, K.J. Stevenson, Influence of Nitrogen Doping on Oxygen
    Reduction Electrocatalysis at Carbon Nanofiber Electrodes. J. Phys. Chem. B, 109
    (2005) 4707-4716.
    [58] Y. Shao, J. Sui, G. Yin, Y. Gao, Nitrogen-doped carbon nanostructures and their
    composites as catalytic materials for proton exchange membrane fuel cell. Appl.
    Catal. B: Environ., 79 (2008) 89-99.
    [59] K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-Doped Carbon Nanotube
    Arrays with High Electrocatalytic Activity for Oxygen Reduction. Science, 323
    (2009) 760-764.
    [60] R.A. Sidik, A.B. Anderson, N.P. Subramanian, S.P. Kumaraguru, B.N. Popov,
    O2 Reduction on Graphite and Nitrogen-Doped Graphite: Experiment and Theory. J.
    Phys. Chem. B, 110 (2006) 1787-1793.
    [61] G. Wu, D. Li, C. Dai, D. Wang, N. Li, Well-Dispersed High-Loading Pt
    Nanoparticles Supported by Shell−Core Nanostructured Carbon for Methanol
    Electrooxidation. Langmuir, 24 (2008) 3566-3575.
    [62] J.-i. Ozaki, S.-i. Tanifuji, A. Furuichi, K. Yabutsuka, Enhancement of oxygen
    reduction activity of nanoshell carbons by introducing nitrogen atoms from metal
    phthalocyanines. Electrochim. Acta, 55 (2010) 1864-1871.
    [63] C. Médard, M. Lefèvre, J.P. Dodelet, F. Jaouen, G. Lindbergh, Oxygen reduction
    by Fe-based catalysts in PEM fuel cell conditions: Activity and selectivity of the
    catalysts obtained with two Fe precursors and various carbon supports. Electrochim.
    Acta, 51 (2006) 3202-3213.
    [64] C.-H. Wang, S.-T. Chang, H.-C. Hsu, H.-Y. Du, J.C.-S. Wu, L.-C. Chen, K.-H.
    Chen, Oxygen reducing activity of methanol-tolerant catalysts by high-temperature
    pyrolysis. Diamond Relat. Mater., 20 (2011) 322-329.
    [65] C.-H. Wang, H.-C. Hsu, S.-T. Chang, H.-Y. Du, C.-P. Chen, J.C.-S. Wu, H.-C.
    Shih, L.-C. Chen, K.-H. Chen, Platinum nanoparticles embedded in pyrolyzed
    nitrogen-containing cobalt complexes for high methanol-tolerant oxygen reduction
    activity. J. Mater. Chem., 20 (2010) 7551.
    [66] F. Jaouen, S. Marcotte, J.-P. Dodelet, G. Lindbergh, Oxygen Reduction Catalysts
    for Polymer Electrolyte Fuel Cells from the Pyrolysis of Iron Acetate Adsorbed on
    Various Carbon Supports. J. Phys. Chem. B, 107 (2003) 1376-1386.
    [67] D. Villers, X. Jacques-Bedard, J.-P. Dodelet, Fe-based catalysts for oxygen
    reduction in PEM fuel cells pretreatment of the carbon support. J. Electrochem. Soc.,
    151 (2004) A1507-A1515.
    [68] Y. Shao, X. Wang, M. Engelhard, C. Wang, S. Dai, J. Liu, Z. Yang, Y. Lin,
    Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow
    batteries. Journal of Power Sources, 195 (2010) 4375-4379.
    [69] L.G. Cançado, A. Jorio, E.H .M . Ferreira, F. Stavale, C.A. A chete, R. B. Capaz,
    M.V.O. Moutinho, A. Lombardo, T.S. Kulmala, A.C. Ferrari, Quantifying Defects in
    Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Lett., 11
    (2011) 3190-3196.
    [70] W.Y. Li, J.G. Liu, C.W. Yan, Multi-walled carbon nanotubes used as an
    electrode reaction catalyst for VO2+/VO2
    + for a vanadium redox flow battery. Carbon,
    49 (2011) 3463-3470.
    [71] W.Y. Li, J.G. Liu, C.W. Yan, Modified multiwalled carbon nanotubes as an
    electrode reaction catalyst for an all vanadium redox flow battery. J Solid State Electr,
    17 (2013) 1369-1376.
    [72] M. Park, Y.J. Jung, J. Kim, H. Lee, J. Cho, Synergistic effect of carbon
    nanofiber/nanotube composite catalyst on carbon felt electrode for high-performance
    all-vanadium redox flow battery. Nano Lett, 13 (2013) 4833-4839.
    [73] O. Di Blasi, N. Briguglio, C. Busacca, M. Ferraro, V. Antonucci, A. Di Blasi,
    Electrochemical investigation of thermically treated graphene oxides as electrode
    materials for vanadium redox flow battery. Applied Energy, 147 (2015) 74-81.
    [74] Z. Ji, X. Wang, H. Zhang, S. Lin, H. Meng, B. Sun, S. George, T. Xia, A.E. Nel,
    J.I. Zink, Designed Synthesis of CeO2 Nanorods and Nanowires for Studying
    Toxicological Effects of High Aspect Ratio Nanomaterials. ACS Nano, 6 (2012)
    5366-5380.
    [75] W. Gao, Z. Zhang, J. Li, Y. Ma, Y. Qu, Surface engineering on CeO2 nanorods
    by chemical redox etching and their enhanced catalytic activity for CO oxidation.
    Nanoscale, 7 (2015) 11686-11691.
    [76] J. Vazquez-Galvan, C. Flox, C. Fabrega, E. Ventosa, A. Parra, T. Andreu, J.R.
    Morante, Hydrogen-Treated Rutile TiO2 Shell in Graphite-Core Structure as a
    Negative Electrode for High-Performance Vanadium Redox Flow Batteries.
    ChemSusChem, 10 (2017) 2089-2098.
    [77] Bard A. J. , Faulkner L.R. , Electrochemical Methods - Fundamentals and
    Application. ISBN 0-471-04372-9.
    [78] P. Han, Y. Yue, Z. Liu, W. Xu, L. Zhang, H. Xu, S. Dong, G. Cui, Graphene
    oxide nanosheets/multi-walled carbon nanotubes hybrid as an excellent
    electrocatalytic material towards VO2+/VO2+ redox couples for vanadium redox flow
    batteries. Energy Eviron. Sci., 4 (2011) 4710.

    QR CODE