簡易檢索 / 詳目顯示

研究生: 林建瀚
Chien-Han Lin
論文名稱: 高溫氧化對鑄鐵耐鋁熱熔損之影響
Effect of High-temperature Oxidation on the Thermal Erosion of Cast Iron in Molten Aluminum
指導教授: 王朝正
Chaur-Jeng Wang
口試委員: 雷添壽
Tien-Shou Lei
吳翼貽
Ye-Ee Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 105
中文關鍵詞: 鑄鐵坩堝鋁湯熔損片墨鑄鐵高溫氧化
外文關鍵詞: Cast iron crucible, Thermal erosion, Flake graphite cast irons, High-temperature oxidation.
相關次數: 點閱:286下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究先以低碳鋼及片墨鑄鐵進行高溫氧化處理及其在鋁湯內的靜態熔損行為。實驗結果顯示,氧化層的連續完整性、附著性及厚度是影響抗鋁湯熔損的重要因子。據此結果,再以片墨鑄鐵與球墨鑄鐵進行高溫氧化處理及動態鋁湯全浸泡熔損試驗。探討其高溫氧化動力學型態與耐鋁熔損特性。實驗結果顯示:(1) 片墨鑄鐵的鋁湯熔損率不到球墨鑄鐵的一半。(2) 氧化後的片墨鑄鐵,其氧化層的抗鋁湯熔損約為片墨鑄鐵基材的43倍,以高溫氧化處理提高片墨鑄鐵的抗熔損是經濟而有效的方案。(3) 施以相同的氧化條件所獲得的氧化層,片墨鑄鐵具有比球墨鑄鐵更持久的抗熔損時間,片墨鑄鐵適用於鋁合金壓鑄所使用的鑄鐵坩堝材料。


    This study explored the static thermal erosion behavior of the low carbon steel and flake graphite cast iron after high-temperature oxidation in the melting aluminum. The experiment results showed that the continuous completeness, adhesion and thickness of the scales are the important factors that would influence the resistance to the thermal erosion. Based on the pre-test results, high-temperature oxidation and dynamic erosion test of the flake graphite cast iron and spheroidal graphite cast iron in the melting aluminum were performed to investigate the kinetics and the characteristic of resistance to the thermal erosion. The experiment results showed that (1) the thermal erosion rate of the flake graphite cast irons is 50% less than that of the spheroidal graphite cast iron. (2) For the oxidized flake graphite cast iron, the oxide scale had a resistance to the thermal erosion, the erosion rate is approximately 43 times smaller than that of flake graphite cast iron base material. This also proves that oxidation treatment is an efficient method to improve the erosion resistance of cast iron to melting aluminum. (3) The scales obtained in identical oxidation condition, the flake graphite cast iron possessed a longer time to resist erosion than the spheroidal graphite cast iron. This shows that the flake graphite cast iron would be more suitable to be used as the material for cast iron crucible for the application of aluminum alloy die-casting.

    第一章 前言 1 第二章 文獻回顧 4 2.1 氧化原理 4 2.1.1 氧化反應 4 2.1.2 鐵-氧平衡相圖 5 2.1.3 氧化反應速率 6 2.1.4 表面加工對氧化的影響 7 2.2 氧化層附著性 8 2.2.1 氧化層的形成 8 2.2.2 氧化層的內部應力 9 2.2.3 幾何形狀因素 11 2.2.4 沖耗腐蝕的影響 14 2.3 熱浸鋁 19 2.3.1 熱浸鋁的擴散 19 2.3.2 碳鋼熱浸後鋁化層的變化 21 2.3.3 鑄鐵的熱浸鍍鋁 25 2.4 鑄鐵的氧化 27 2.4.1 鑄鐵 27 2.4.2 碳當量 29 2.4.3 鑄鐵的高溫氧化 30 2.4.4 矽元素對鑄鐵的影響 31 2.4.5 鉻元素對鑄鐵的影響 34 第三章 實驗方法 35 3.1 實驗流程 35 3.2 試片製作及加工 37 3.3 高溫氧化實驗 40 3.4 鋁湯熔損實驗 40 3.5 試片鑲埋與金相觀察 43 3.6 掃描式電子顯微鏡搭配能譜儀成分分析 45 第四章 前導實驗 46 4.1 低碳鋼 46 4.1.1 低碳鋼的高溫氧化動力學 46 4.1.2 低碳鋼氧化後的形態 50 4.1.3 低碳鋼氧化後的鋁湯熔損 51 4.2 片墨鑄鐵 53 4.2.1 片墨鑄鐵的高溫氧化動力學 53 4.2.2 片墨鑄鐵氧化後的形態 57 4.2.3 片墨鑄鐵氧化後的鋁湯熔損 59 4.2.4 討論 60 第五章 鑄鐵高溫氧化皮膜之抗鋁湯熔損試驗 62 5.1 片墨鑄鐵的氧化與熔損行為 62 5.1.1 片墨鑄鐵的高溫氧化動力學 62 5.1.2 片墨鑄鐵氧化後的形態 68 5.1.3 片墨鑄鐵氧化後的鋁湯熔損 72 5.2 球墨鑄鐵的氧化與熔融行為 80 5.2.1 球墨鑄鐵的高溫氧化動力學 80 5.2.2 球墨鑄鐵氧化後的形態 84 5.2.3 球墨鑄鐵氧化後的鋁湯熔損 85 5.3 石墨型態對鑄鐵於鋁湯的熔損比較 91 5.3.1 片墨鑄鐵與球墨鑄鐵的本體熔損 91 5.3.2 片墨鑄鐵與球墨鑄鐵的氧化層熔損 94 5.3.3 產業應用之可行性 94 第六章 結論 96 參考文獻 97

    [1] 李健維,「滲氮及氧化處理對鋼料在鋁液中之耐熔蝕性的影響」,
    碩士論文,國立臺灣大學機械所,臺北 (1998)。
    [2] 柯宗欣,「抗A356鋁液腐蝕材料之研究」,碩士論文,大葉大學機械所,彰化縣 (2000)。
    [3] 呂峻宇,「模具鋼表面鍍層耐鋁湯熔損性能之研究」,碩士論文,國立臺灣海洋大學機械與機電工程學系,臺北 (2010)。
    [4] S. Ma, K. Xu, and W. Jie, "Plasma nitrided and TiCN coated AISI H13 steel by pulsed dc PECVD and its application for hot-working dies", Surface & Coatings Technology 191, pp. 201 (2005).
    [5] L. L .G. Silva, M. Ueda, and R. Z. Nakazato, "Enhanced corrosion resistance of AISI H13 steel treated by nitrogen plasma immersion ion implantation", Surface & Coatings Technology 201, pp. 8291 (2007).
    [6] S. Y. Lee, "Mechanical properties of TiNx/Cr1-xN thin films on plasma nitriding-assisted AISI H13 steel", Surface & Coatings Technology 193, pp. 55 (2005).
    [7] Y. Wang, "A Study of PVD Coatings and Die Materials for Extended Die-casting Die-life", Surface and Coating Technology, Vol. 94-95, pp. 60-63 (1997).
    [8] D. R. Lide ed., Handbook of Chemistry and Physics, 74th ed., CRC press Inc., pp. 12-155 (1994).
    [9] 朱日彰,耐熱鋼和高溫合金,化學工業出版社,北京,第35頁 ( 1996 )。
    [10] 柯賢文,腐蝕及其防制,全華科技圖書股份有限公司,臺北,
    第227-238頁 (2012)。
    [11] 莊東漢,材料破損分析,五南圖書出版股份有限公司,臺北,第442-455頁 (2010)。
    [12] N. Birks and G.H. Meier, Introduction to High Temperature Oxidation of Metals, Edwar Arnold Ltd, pp. 73 (1983).
    [13] F. Gesmundo and F. Viani, Corrosion Science, 18 (1978) 231.
    [14] N. Birks and G. H. Meier, Introduction to High Temperature Oxidation of Metals, Edward Arnold, London, pp. 54-62 (1983).
    [15] A. S. Khanna, Introduction to High Temperature Oxidation and Corrosion, ASM International, Nevada, pp. 1-17, (2002).
    [16] D. R. Askeland, The Science and Engineering of Materials, Thomson Canada Limited, Nelson, pp. 828-832, (2006).
    [17] A. Brasunas, Nace Basic Corrosion Course, National Association of Corrosion Engineers, Huston, (1970).
    [18] J. A. Von Fraunhofer and G. A. Pickup, Corrosion Science, Vol. 10, p. 253 (1970).
    [19] L. Jansson and N. G. Vannerberg, Oxid. Met. 3 (1971) 453.
    [20] D. Caplan, G. I. Sproule, and R. J. Hussey, Corrosion Science, 10
    (1970) 9.
    [21] W.R. Price, ibid, 7 (1967) 477.
    [22] 日本腐蝕防蝕學會編,池田雄二等著,黃忠良 譯,金屬材料之高溫氧化與腐蝕,復漢出版社,臺北,第46-47頁 (1999)。
    [23] A. S. Khanna, Introduction to High Temperature Oxidation and Corrosion, ASM International, Nevada, Vol.10, pp. 203-212 (2002).
    [24] M. G. Fontana, Corrosion Engineering, McGraw-Hill Book Company, New York, pp.505 (1986).
    [25] 鮮祺振 譯,金屬腐蝕膜特性探討,財團法人徐氏基金會,臺北,
    第49-50 & 171-195頁 (1998)。
    [26] U. R. Evans, The Corrosion and Oxidation of Metals, E. Arnold, London, (1960).
    [27] G. J. Danek, Naval Engineers J, (1996), 75, 763.
    [28] A. Levy and B. Q. Wang, Corrosion, pp.147, St Louis, MO (1988).
    [29] C. T. Kang, F. S. Pettit, and N. Birks, Metall. Trans, A (1987), 18A, 1785.
    [30] G. R. Hoey and J. S. Bednar, Corrosion, (1983), 22, 9.
    [31] I. G. Wright, V. Nagarajan, and J. Stringer, Oxidation of Metals, (1986), 25, 175.
    [32] V. Joshi, K. Kulkarni, R. Shivpuri, , R. S. Bhattacharya, S. J. Dikshit, and D. Bhat, "Dissolution and soldering behavior of nitrided hot working steel with multilayer LAFAD PVD coatings," Surface and Coatings Technology, vol. 146-147, (2001), pp. 338-343.
    [33] Ryabov, V. R. et al. "The electron beam welding of steel to aluminum", Automatic Welding, Vol.28, No.10, pp.34-37 (1975).
    [34] Toshiharu Kittaka,熔融Al 熱浸鋼板,表面技術,第2卷,第169-177頁 (1991).
    [35] S. Kobayashi and T. Yakou, "Control of intermetallic compound layers at interface between steel and aluminum by diffusion-treatment", Materials Science Engineering A, 338, 44 (2002).
    [36] Y. Wang, Z. K. Liu, and L. Q. Chen, "Thermodynamic properties of Al, Ni, NiAl, and Ni3Al from first-principles calculations", Acta Materialia, 52, 2671 (2004).
    [37] M. Johnson, D.E. Mikkola, P.A. March, and R.N. Wright, Wear, 140 (1990).
    [38] C. G. Mckamy, J. h. Devan, P. f. Tortorelli, and V. K. Sikka, J. Master. Res., 6, pp. 695-707 (1991).
    [39] J. R. Knibloe, R. N. Wright, C. L. Trybus, and V. K. Sikka, J. Master. Sci., 28, 2040 (1993).
    [40] R. G. Balididad and A. Radhakrishna, Mater. Sci. Eng., A287, pp. 23-29 (2000).
    [41] N. S. Stoloff, Mater. Sci. Eng., A258, pp.1-14.
    [42] R. W. Richards, R. D. Jones, P. D. Clements, and H. Clarke, "Metallurgy of continuous hot dip aluminizing", International Materials Reviews, Vol.39, No.5, pp.191-198 (1994).
    [43] 鄭維仁,「鉻鉬鋼熱浸鋁矽後鋁化層之顯微結構與高溫相變化行為」, 博士學位論文,國立台灣科技大學機械所,臺北 (2011)。
    [44] W. J. Cheng and C. J. Wang, "Study of microstructure and phase evolution of hot-dipped aluminide mild steel during high-temperature diffusion using electron backscatter", Applied Surface Science, 257, 4663 (2011).
    [45] S. G. Denner and R. D. Jones, Met. Technol., 4 (1977) 167.
    [46] S. G. Denner, PhD thesis, University of Wales, Cardiff, (1976).
    [47] J. L. Song, S. B. Lin, C. L. Yang, and C. L. Fan, J. Alloy. Compd., 448 (2009) 217.
    [48] M. B. Lin and C. J. Wang, "Microstructure and High temperature Oxidation Behavior of Hot-Dip Aluminized Coating on High Silicon Ductile Iron", Surface and Coatings Technology, 205, pp.1220-1224 (2010).
    [49] H. Mehrer, M. Eggersmann, A. Gude, M. Salamon, and B. Sepiol, Mater. Sci. Eng., A 239 (1997) 889.
    [50] T. Maitra and S. P. Gupta, Mater. Charact., 49 (2003) 293.
    [51] 梁慈玉,「高矽含鉬鑄鐵熱浸鋁及其高溫氧化後之顯微結構」,碩士學位論文,國立台灣科技大學機械所,臺北 (2013)。
    [52] ASM Metals Handbook, Alloy phase diagram, Vol.3, 8th ed., "American Society for Metals", Metals Park, pp.110 (1975).
    [53] C. Labrecque and M. Gagne, "Review Ductile Iron Fifty Years of Continuous Development", Canadian Metallurgical Quarterly, Vol. 37, No 5, pp.343-378 (1998).
    [54] J. M. Schissler and J. Saverna, "The Effect of Segregation on the Formation of Austempered Ductile Iron", J. Heat Treating, Vol. 4, No. 2, pp.167-176 (1985).
    [55] 周繼揚,鑄鐵彩色金相學,機械工業出版社,中國,第10-12頁 (2002)。
    [56] I. Riposan, M. Chisamera, S. Stan, and T. Skaland , "Surface Graphite Degeneration in Ductile Iron Castings for Resin Molds", Tsinghua Science and Technology, Vol.13, No.2, pp.157-163 (2008).
    [57] G. F. Sergeant, "Late metal stream inoculation–BCIRA developments", Processings of the AFS-CMI Conference : Modern inoculation practice for gray and ductile iron, PP.250-259 (1979).
    [58] J. Robertson and M. I. Manning, Mater. Sci. Tech., 5 (1989) 741.
    [59] 林盟斌,片狀石墨與球狀石墨鑄鐵塗覆鋁/鎳鋁塗層厚之高溫氧化與顯微結構博士學位論文,國立台灣科技大學機械所,臺北 (2011)。
    [60] A. R. Kiani Rashid and D.V. Edmonds, Surf. Interface Anal., 36 (2004) 1011.
    [61] Yoon-Jun Kim, Ho Jang, and Yong-Jun Oh, Metall. Mater. Trans., A 40 (2009) 2087.
    [62] F. Tholence and M. Norell, "High temperature corrosion of cast alloys in exhaust environmentⅠ-ductile cast iron", Oxidation of Metals, Vol.69, pp.13-36 (2008).
    [63] C. Ji and S. Zhu, "Study of a New type Ductile Iron for Rolling: Composition Design (1) ", Materials Science and Engineering, A 419, pp.318-325 (2006).
    [64] S. H. Park, J. M. Kim, H. J. Kim, S. J. Ko, H. S. Park, and J. D. Lim, "Development of a Heat Resistant Cast Iron Alloy for Engine Exhaust Manifolds", SAE World Congress, 2005-01-1688, (2005).
    [65] O. Kubaschewaki and B. E. Hopkins, "Oxidation of Metals and Alloys", Academic Press, New York, pp. 232-233 (1962).
    [66] N. Birks and G. H. Meier, Introduction to High Temperature Oxidation of Metals, Edward Arnold, London, pp. 112-115 (1983).
    [67] A. Atkinson, "A theoretical analysis of the oxidation of Fe-Si alloys", Corrosion Science, vol. 22, pp. 87-102 (1982).
    [68] C. W. Tuck, "Non-Protective and protective scaling of a commercial 1 3/4 silicon-Iron alloy in the range 800 ~ 1000 ℃", Corrosion Science, vol. 5, pp.631~643 (1965).
    [69] T. Ban, "The formation of protective films on iron-silicon alloys", Corrosion Science, vol. 19, pp. 228-293 (1979).
    [70] P. T. Mosely, "The oxidation of dilute iron-silicon alloys in carbon dioxide", Corrosion Science, vol. 22, pp. 68 ~ 86 (1982).
    [71] I. Svedung and N. G. Vannerberg , "The Influence of Silicon on the Oxidation Properties of Iron", Corrosion Science, vol. 14, pp.391-399 (1974).
    [72] G. C. Wood, I. G. Wright, T. Hodgkiess, and D. P. Whittle, Workstoffe Korrosion, 21, (1970) 900.
    [73] 賴逸林,石墨形態對鑄鐵耐熱性質之影響研究,碩士論文,國立臺灣大學機械所,臺北 (1990)。
    [74] 魏瓞彰,球狀石墨鑄鐵之耐熱性質研究,碩士論文,國立台灣大學機械所,台北 (2001)。
    [75] 潘永寧,「耐高溫球狀石墨鑄鐵」,機械月刊,第十卷,第八期,第95-101頁 ( 1984 )。
    [76] 楊毓玲,矽含量對電磁鋼高溫氧化行為之影響研究,碩士論文,國立成功大學材料科學及工程學系,台南 ( 2006 )。
    [77] Kubaschewski and Hopkings, Oxidation of metal and alloy, New York, Academic Press (1962).
    [78] J. Robertson, "Healing layer formation in Fe-Cr-Si ferritic steels", Materials Science and Technology, vol. 5, pp. 741-753 (1989).
    [79] 鄭維仁,「鉻鉬鋼熱浸鋁矽後鋁化層之顯微結構與高溫相變化行為」, 博士學位論文,國立台灣科技大學機械所,臺北 (2011)。
    [80] C. J. Wang and C. C. Li, Surf. Coat. Technol., pp. 177-178 (2003) 37.
    [81] C. C. Tsaur, J. C. Rock, and Y. Y. Chang, Mater. Chem. Phys., 91 (2005).
    [82] 江芝宇,高矽球墨鑄鐵的鉬含量對顯微結構的影響碩士學位論文,國立台灣科技大學機械所,臺北 (2011)。

    QR CODE