簡易檢索 / 詳目顯示

研究生: 安亮吟
Saruul Enkh-Amgalan
論文名稱: 多小區多使用者大規模多輸入多輸出系統中 導頻污染與硬體非線性之研究
Study of Pilot Contamination and Hardware Nonlinearity in Multi-Cell Multi-User Massive MIMO Systems
指導教授: 徐勝均
Sendren Sheng-Dong Xu
口試委員: 柯正浩
Kevin Cheng-Hao Ko
李俊賢
Jin-Shyan Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 70
中文關鍵詞: 硬體缺陷大規模多輸入多輸出導頻污染上傳頻譜效率萊斯衰減通道
外文關鍵詞: Hardware Impairment, Massive Multiple-Input Multiple-Output, Massive MIMO, Pilot Contamination, Uplink Spectral Efficiency, Rician Fading Channel
相關次數: 點閱:230下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著工業4.0時代的到來,大規模多輸入多輸出(Massive Multiple-Input Multiple-Output, Massive MIMO)的技術開創了無線通訊的新紀元。截至目前為止,其已經在一些4G基地台上得到了成功的應用。未來,它也將是5G通訊能否實現的關鍵技術之一。在多小區多使用者大規模多輸入多輸出網路(Multi-cell Multi-user Massive MIMO Networks)中,是以時分雙工(Time-Division Duplexing, TDD)的模式運行,且每個基站(Base Station, BS)使用多根天線共同為每個小區中的多個單天線用戶終端(User Terminals, UTs)提供服務。由於無線系統的時變特性和大量 UTs需要在小區之間重複使用導頻信號,互相傳輸相同訓練導頻的UTs會相互惡化彼此的通道,進而導致資料傳輸性能的下降。在另一方面,品質較差的非理想硬體組件的應用,容易對通道估計產生非線性硬體損傷。鑑於上述在傳統Massive MIMO 系統中導頻污染與硬體非線性的嚴重性,本研究特別專注於可達率(Achievable Rate)的部分,對上述議題加以探討與改進。我們使用最大比合併(Maximum Ratio Combining, MRC) 和最小均方誤差 (Minimum-Mean-Squared-Error, MMSE) 估計器,在空間不相關的萊斯衰減(Rician Fading)情況下分析計算每個上行頻譜效率(Spectral Efficiency, SE)。接下來,我們對每種方法進行比較,並測量導頻污染和硬體非線性對通道估計的影響。此外,我們設計了圖形使用者界面以方便模擬各種模型。我們所建立的使用者界面,能讓非程式設計者和程式設計者,在無需修改程式原始碼的情況下修改模擬所需的設定。模擬結果顯示在每種情境的比較下,導頻污染的影響比硬體失真更為嚴重。


    With the advent of the Industry 4.0 era, Massive MIMO (Massive Multiple-Input Multiple-Output) techniques have been created a new epoch of wireless communication. So far, it has been successfully applied to some 4G Base Stations. In the future, it will also be one of the critical technologies for the realization of 5G communication. In Multi-cell Multi-user Massive MIMO Networks, our system operates in Time-Division Duplexing (TDD) mode, and each Base Station (BS) uses multiple antennas to jointly serve multiple single-antenna User Terminals (UTs) in each cell. Due to the time-varying characteristic of wireless systems and the large number of UTs having to reuse the pilot signals across the cells, UTs mutually transmitting the same training pilot deteriorate each other’s channel, thus resulting in a degradation in the performance of data transmission. On the other hand, the application of non-ideal hardware components of lesser quality is prone to nonlinear hardware impairments on channel estimation. Considering the seriousness of the above-mentioned pilot pollution and hardware nonlinearity in the conventional massive MIMO systems, this study discusses and simulates them under various scenarios, particularly focusing on achievable rates. We analytically compute the uplink Spectral Efficiency (SE) with Minimum-Mean-Squared-Error (MMSE) estimators under spatially uncorrelated Rician fading. Next, we make an analogy for each approach and measure the impact of pilot contamination and hardware nonlinearities on the channel estimation. In addition, we design a graphical user interface to facilitate the simulation of various models and generate results for specific scenarios. Simulation results indicate the comparison outcome for each scenario shows that the impact of pilot contamination is more severe than that of the hardware distortion.

    Acknowledgements I 摘要 II Abstract III Table of Contents IV List of Figures VI List of Tables VIII Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Thesis Objective 5 1.3 Thesis Outline 5 Chapter 2 Preliminaries in Multi-Cell Multi-User Massive MIMO 7 2.1 Introduction to Pilot Contamination 9 2.2 Pilot Contamination Mitigation Strategies 12 2.3 Introduction to Hardware Nonlinearities 13 2.4 Nonlinear System Modeling 15 Chapter 3 Uplink Data Transmission in Multi-Cell Systems 18 3.1 Multipath Fading Channel Model 18 3.2 Distortionless MMSE Estimator 21 3.3 Contaminated Channel Estimation Model 22 3.4 Channel Estimations with Hardware Impairments 23 3.4.1 Perfect Channel Estimation 24 3.4.2 MMSE Channel Estimation with Distortion Correlation 25 Chapter 4 Uplink SINR with MMSE Combining Scheme 27 4.1 Signal-to-Interference-Plus-Noise-Ratio 28 4.2 Uplink SINR Expression with Effective Channel Estimation and Pilot Contamination 30 4.2.1 SINR with MRC Receiver under Pilot Contamination 30 4.2.2 SINR with MMSE Receiver under Pilot Contamination 31 4.3 Uplink SINR Expression under Hardware Nonlinearities 35 4.3.1 SINR with MMSE Receiver under Distorted Perfect CSI 35 4.3.2 SINR with MMSE Estimator under Hardware Distortions 36 Chapter 5 Experimental Results and Discussion 39 5.1 Simulation Scenario and Standard Parameters 39 5.2 Performance Evaluation: Spectral Efficiency 42 5.3 Result and Discussion 43 5.3.1 Spectral Efficiency of Distortionless MMSE Receiver 43 5.3.2 Spectral Efficiency of MMSE Receiver under Hardware Impairments 45 5.3.3 Spectral Efficiency of MMSE Receiver under Pilot Contamination 46 5.3.4 Four Cells Deployments of Impaired Effective Channels in Rician Fading Environment 47 5.3.5 Four Cells Deployments of Impaired Effective Channels in Rayleigh Fading Environment 50 5.3.6 Nine Cells Deployments of Impaired Effective Channels in Rician Fading Environment 52 5.3.7 Graphical Interface to Run Comparative Simulation 54 Chapter 6 Conclusion and Future Work 57 6.1 Conclusion 57 6.2 Future Work 58 Appendix 60 References 62

    [1] Cisco, “Cisco annual internet report (2018-2023),” White paper. [Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html.
    [2] F. Jejdling, “Ericsson mobility report,” [Online]. Available: https://www.ericsson.com/49220c/assets/local/mobility-report/documents/2020/emr-q4-2020-update.pdf.
    [3] T. L. Marzetta, “Noncooperative cellular wireless with unlimited numbers of base station antennas,” IEEE Transactions on Wireless Communications, vol. 9, no. 11, pp. 3590-3600, Nov. 2010, DOI: 10.1109/TWC.2010.092810.091092.
    [4] R. Chataut and R. Akl R, “Massive MIMO systems for 5G and beyond networks-overview, recent trends, challenges, and future research direction,” Sensors 2020.20:2753, May 2020, DOI: 10.3390/s20102753.
    [5] J. Hoydis, C. Hoek, T. Wild, and S. Ten Brink, “Channel measurements for large antenna arrays,” in Proc. International Symposium on Wireless Communication Systems, Paris, France, Aug. 28-31, 2012, pp. 811-815, DOI: 10.1109/ISWCS.2012.6328480.
    [6] S. Jaeckel, L. Raschkowski, K. Börner, and L. Thiele, “QuaDRiGa: A 3-D multi-cell channel model with time evolution for enabling virtual field trials,” IEEE Transactions on Antennas and Propagation, vol. 62, no. 6, pp. 3242-3256, June 2014, DOI: 10.1109/TAP.2014.2310220.
    [7] S. M. S. Sadough and P. Duhamel, “Improved iterative detection and achieved throughputs of OFDM systems under imperfect channel estimation,” IEEE Transactions on Wireless Communications, vol. 7, no. 12, pp. 5039-5050, Dec. 2008, DOI: 10.1109/T-WC.2008.070944.
    [8] O. Alhussein, I. Ahmed, J. Liang, and S. Muhaidat, “Unified analysis of diversity reception in the presence of impulsive noise,” IEEE Transactions on Vehicular Technology, vol. 66, no. 2, pp. 1408-1417, Feb. 2017, DOI: 10.1109/TVT.2016.2569064.
    [9] M. S. Alam, G. Kaddoum, and B. L. Agba, “Performance analysis of distributed wireless sensor networks for gaussian source estimation in the presence of impulsive noise,” IEEE Signal Processing Letters, vol. 25, no. 6, pp. 803-807, June 2018, DOI: 10.1109/LSP.2018.2825951.
    [10] J. Hoydis, S. ten Brink, and M. Debbah, “Massive MIMO in the UL/DL of cellular networks: How many antennas do we need?,” IEEE Journal on Selected Areas in Communications, vol. 31, no. 2, pp. 160-171, Feb. 2013, DOI: 10.1109/JSAC.2013.130205.
    [11] F. Fernandes, A. Ashikhmin, and T. L. Marzetta, “Inter-cell interference in noncooperative TDD large scale antenna systems,” IEEE Journal on Selected Areas in Communications, vol. 31, no. 2, pp. 192-201, Feb. 2013, DOI: 10.1109/JSAC.2013.130208.
    [12] E. Björnson, J. Hoydis, and L. Sanguinetti, “Massive MIMO networks: Spectral, energy, and hardware efficiency,” Foundations and Trends in Signal Processing, vol. 11, no. 3-4, pp. 154-655, Nov. 2017.
    [13] H. Yang and T. L. Marzetta, “Massive MIMO with max-min power control in line-of-sight propagation environment,” IEEE Transactions on Communications, vol. 65, no. 11, pp. 4685-4693, July 2017.
    [14] E. G. Larsson, T. L. Marzetta, H. Yang, and H. Q. Ngo, Fundamentals of massive MIMO. Cambridge, U.K.: Cambridge University Press, Nov. 2016.
    [15] B. Gopalakrishnan and N. Jindal, “An analysis of pilot contamination on multi-user MIMO cellular systems with many antennas,” in Proc. Intl. Workshop on Signal Proc. Advances in Wireless Communications, San Francisco, CA, USA, pp. 381-385, June 2011. DOI: 10.1109/TCOMM.2017.2725262.
    [16] J. Jose, A. Ashikhmin, T. L. Marzetta, and S. Vishwanath, “Pilot contamination and precoding in multi-cell TDD systems,” IEEE Transactions on Wireless Communications, vol. 10, no. 8, pp. 2640-2651, Aug. 2011. DOI: 10.1109/ISIT.2012.6283031.
    [17] A. Ashikhmin and T. Marzetta, “Pilot contamination precoding in multi-cell large scale antenna systems,” in Proc. IEEE International Symposium on Information Theory Proceedings, Cambridge, MA, USA, July 1-6, 2012, pp. 1137-1141, DOI: 10.1109/ISIT.2012.6283031.
    [18] O. Elijah, C. Y. Leow, A. R. Tharek, S. Nunoo, and S. Z. Iliya, “Mitigating pilot contamination in massive MIMO system — 5G: An overview,” in Proc. Asian Control Conference, Kota Kinabalu, Malaysia, May 31-June 3, 2015, pp. 1-6, DOI: 10.1109/ASCC.2015.7244441.
    [19] M. Mazrouei-Sebdani and W. A. Krzymień, “Massive MIMO with clustered pilot contamination precoding,” in Proc. Asilomar Conference on Signals, Systems and Computers, Californio, USA, Nov. 2013, pp. 1218-1222, DOI: 10.1109/ACSSC.2013.6810487.
    [20] R. R. Müller, M. Vehkaperä, and L. Cottatellucci, “Blind pilot decontamination,” IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 5, pp. 773-786, Oct. 2014. DOI: 10.1109/JSTSP.2014.2310053.
    [21] S. Lakshminarayana, M. Assaad, and M. Debbah, “Coordinated multicell beamforming for massive MIMO: A random matrix approach,” IEEE Transactions on Information Theory, vol. 61, no. 6, pp. 3387-3412, June 2015, DOI: 10.1109/TIT.2015.2421446.
    [22] E. Björnson, J. Hoydis, and L. Sanguinetti, “Massive MIMO has unlimited capacity,” IEEE Transactions on Wireless Communications, vol. 17, no. 1, pp. 574-590, Jan. 2018, DOI: 10.1109/TWC.2017.2768423.
    [23] A. Ashikhmin, L. Li, and T. L. Marzetta, “Interference reduction in multi-cell massive MIMO systems with large-scale fading precoding,” IEEE Transactions on Information Theory, vol. 64, no. 9, pp. 6340-6361, Sep. 2018, DOI: 10.1109/TIT.2018.2853733.
    [24] J. Jose, A. Ashikhmin, T. L. Marzetta, and S. Vishwanath, “Pilot contamination and precoding in multi-cell TDD systems,” IEEE Transactions on Wireless Communications, vol. 10, no. 8, pp. 2640-2651, Aug. 2011, DOI: 10.1109/TWC.2011.060711.101155.
    [25] T. L. Marzetta, G. Caire, M. Debbah, I. Chih-Lin, and S. K. Mohammed, “Special issue on massive MIMO,” Journal of Communications and Networks, vol. 15, no. 4, pp. 333-337, Aug. 2013, DOI: 10.1109/JCN.2013.000064.
    [26] J. Jose, A. Ashikhmin, T. L. Marzetta, and S. Vishwanath, “Pilot contamination problem in multi-cell TDD systems,” in Proc. IEEE International Symposium on Information Theory, Seoul, Korea, June 28-July 3 2009, pp. 2184-2188, DOI: 10.1109/ISIT.2009.5205814.
    [27] Y. Qin, S. Azodolmolky, M. Gunkel, R. Nejabati, and D. Simeonidou, “Hardware accelerated impairment-aware control plane for future optical networks,” IEEE Communications Letters, vol. 15, no. 9, pp. 1004-1006, Sept. 2011, DOI: 10.1109/LCOMM.2011.070711.110410.
    [28] E. Björnson, L. Sanguinetti, J. Hoydis, and M. Debbah, “Optimal design of energy-efficient multi-user MIMO systems: Is massive MIMO the answer?,” IEEE Transactions on Wireless Communications, vol. 14, no. 6, pp. 3059-3075, June 2015, DOI: 10.1109/TWC.2015.2400437.
    [29] H. Yin, D. Gesbert, M. C. Filippou, and Y. Liu, “Decontaminating pilots in massive MIMO systems,” in Proc. IEEE International Conference on Communications, Budapest, Hungary, June 9-13, 2013, pp. 3170-3175, DOI: 10.1109/ICC.2013.6655031.
    [30] H. Yin, D. Gesbert, M. Filippou, and Y. Liu, “A coordinated approach to channel estimation in large-scale multiple-antenna systems,” IEEE Journal on Selected Areas in Communications, vol. 31, no. 2, pp. 264-273, Feb. 2013, DOI: 10.1109/JSAC.2013.130214.
    [31] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE Communications Magazine, vol. 52, no. 2, pp. 186-195, Feb. 2014, DOI: 10.1109/MCOM.2014.6736761.
    [32] A. K. Papazafeiropoulos and T. Ratnarajah, “Downlink MIMO HCNs with residual transceiver hardware impairments,” IEEE Communications Letters, vol. 20, no. 10, pp. 2023-2026, Oct. 2016, DOI: 10.1109/LCOMM.2016.2593480.
    [33] Y. Wu, Y. Gu and Z. Wang, “Efficient channel estimation for mmWave MIMO with transceiver hardware impairments,” IEEE Transactions on Vehicular Technology, vol. 68, no. 10, pp. 9883-9895, Oct. 2019, DOI: 10.1109/TVT.2019.2934167.
    [34] G. Fettweis, M. Lohning, D. Petrovic, M. Windisch, P. Zillmann, and W. Rave, “Dirty RF: A new paradigm,” in Proc. International Symposium on Personal, Indoor and Mobile Radio Communications, Berlin, Germany, Sep. 11-14, 2005, pp. 2347-2355, vol. 4, DOI: 10.1109/PIMRC.2005.1651863.
    [35] B. Maham and O. Tirkkonen, “Transmit antenna selection OFDM systems with transceiver I/Q imbalance,” IEEE Transactions on Vehicular Technology, vol. 61, no. 2, pp. 865-871, Feb. 2012, DOI: 10.1109/TVT.2011.2178081.
    [36] P. Robertson and S. Kaiser, “Analysis of the effects of phase-noise in orthogonal frequency division multiplex (OFDM) systems,” in Proc. IEEE International Conference on Communications, Seattle, USA, June 16-22, 1995, pp. 1652-1657, vol. 3, DOI: 10.1109/ICC.1995.524481.
    [37] A. G. Armada and M. Calvo, “Phase noise and sub-carrier spacing effects on the performance of an OFDM communication system,” IEEE Communications Letters, vol. 2, no. 1, pp. 11-13, Jan. 1998, DOI: 10.1109/4234.658613.
    [38] D. R. Morgan, Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, “A Generalized memory polynomial model for digital predistortion of RF power amplifiers,” IEEE Transactions on Signal Processing, vol. 54, no. 10, pp. 3852-3860, Oct. 2006, DOI: 10.1109/TSP.2006.879264.
    [39] A. K. Dutta, “Performance analysis of hardware impairment aware MMSE receiver with channel and CFO estimation error Statistics for a large MIMO-OFDM system,” IEEE Transactions on Vehicular Technology, vol. 68, no. 12, pp. 11827-11837, Dec. 2019, DOI: 10.1109/TVT.2019.2944770.
    [40] C. Lee, W. Ma, and N. L. Wang, “Averaging and cancellation effect of high-order nonlinearity of a power amplifier,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 54, no. 12, pp. 2733-2740, Dec. 2007, DOI: 10.1109/TCSI.2007.905650.
    [41] A. Tarighat, R. Bagheri, and A. H. Sayed, “Compensation schemes and performance analysis of IQ imbalances in OFDM receivers,” IEEE Transactions on Signal Processing, vol. 53, no. 8, pp. 3257-3268, Aug. 2005, DOI: 10.1109/TSP.2005.851156.
    [42] T. C. W. Schenk, E. R. Fledderus, and P. F. M. Smulders, “Performance analysis of zero-IF MIMO OFDM transceivers with IQ imbalance,” Journal of Communications, vol. 2, no. 7, Dec. 2007, DOI:10.4304/jcm.2.7.9-19.
    [43] S. Pamarti, “The effect of noise cross-coupling on time-interleaved delta-sigma ADCs,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 55, no. 6, pp. 532-536, June 2008, DOI: 10.1109/TCSII.2007.916794.
    [44] U. H. Rizvi, G. J. M. Janssen, and J. H. Weber, “BER analysis for MPAM signal constellations in the presence of fading and ADC quantization noise,” IEEE Communications Letters, vol. 13, no. 10, pp. 733-735, Oct. 2009, DOI: 10.1109/LCOMM.2009.091586.
    [45] E. Björnson, M. Matthaiou, and M. Debbah, “Massive MIMO with non-ideal arbitrary arrays: Hardware scaling laws and circuit-aware design,” IEEE Transactions on Wireless Communications, vol. 14, no. 8, pp. 4353-4368, Aug. 2015, DOI: 10.1109/TWC.2015.2420095.
    [46] T. C. W. Schenk, Xiao-Jiao Tao, P. F. M. Smulders, and E. R. Fledderus, “Influence and suppression of phase noise in multi-antenna OFDM,” in Proc. Vehicular Technology Conference, LA, USA, Sep. 26-29, 2004, pp. 1443-1447 vol. 2, DOI: 10.1109/VETECF.2004.1400262.
    [47] T. C. W. Schenk, RF Imperfections in High-Rate Wireless Systems, Impact and Digital Compensation. New York, NY, USA: Springer-Verlag, 2008.
    [48] D. Dardari, V. Tralli, and A. Vaccari, “A theoretical characterization of nonlinear distortion effects in OFDM systems,” IEEE Transactions on Communications, vol. 48, no. 10, pp. 1755–1764, 2000. DOI: 10.1109/26.871400
    [49] S. Jacobsson, G. Durisi, M. Coldrey, U. Gustavsson, and C. Studer, “Throughput analysis of massive MIMO uplink with low-resolution ADCs,” IEEE Transactions on Wireless Communications, vol. 16, no. 6, pp. 4038-4051, June 2017, DOI: 10.1109/TWC.2017.2691318.
    [50] M. Alodeh, D. Spano, A. Kalantari, C. Tsinos, D. Chrsitopoulos, S. Chatzinotas, and B. Ottersten, “Symbol-level and multicast precoding for multiuser multiantenna downlink: A state-of-the-art, classification, and challenges,” IEEE Communications Surveys & Tutorials, vol. 20, no. 3, pp. 1733-1757, May 2018, DOI: 10.1109/COMST.2018.2837001.
    [51] J. Lee and N. Jindal, “Symmetric capacity of MIMO downlink channels,” in Proc. IEEE International Symposium on Information Theory, Seattle, USA, July 9-14 2006, pp. 1031-1035, DOI: 10.1109/ISIT.2006.261884.
    [52] Ö. T. Demir and E. Björnson, “Channel estimation in massive MIMO under hardware non-linearities: Bayesian methods versus deep learning,” IEEE Open Journal of the Communications Society, vol. 1, pp. 109-124, 2020, DOI: 10.1109/OJCOMS.2019.2959913.
    [53] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice-Hall, USA, May. 1993.
    [54] Ö. Özdogan, E. Björnson, and E. G. Larsson, “Massive MIMO with spatially correlated Rician fading channels,” IEEE Transactions on Communications, vol. 67, no. 5, pp. 3234-3250, May 2019, DOI: 10.1109/TCOMM.2019.2893221.
    [55] E. Björnson, J. Hoydis, M. Kountouris, and M. Debbah, “Massive MIMO systems with non-ideal hardware: Energy efficiency, estimation, and capacity limits,” IEEE Transactions on Information Theory, vol. 60, no. 11, pp. 7112-7139, Nov. 2014, DOI: 10.1109/TIT.2014.2354403.
    [56] A. Mantravadi, V. V. Veeravalli and H. Viswanathan, “Spectral efficiency of MIMO multiaccess systems with single-user decoding,” IEEE Journal on Selected Areas in Communications, vol. 21, no. 3, pp. 382-394, Apr. 2003, DOI: 10.1109/JSAC.2003.809699.
    [57] O. Amin, E. Bedeer, M. H. Ahmed, and O. A. Dobre, “Energy efficiency–spectral efficiency tradeoff: A multiobjective optimization approach,” IEEE Transactions on Vehicular Technology, vol. 65, no. 4, pp. 1975-1981, April 2016, DOI: 10.1109/TVT.2015.2425934.
    [58] A. J. Paulraj and C. B. Papadias, “Space-time processing for wireless communications,” IEEE Signal Processing Magazine, vol. 14, no. 6, pp. 49-83, Nov. 1997, DOI: 10.1109/79.637317.
    [59] Further Elaboration on PA Models for NR, document 3GPP TSG-RAN WG4, R4-165901, Ericsson, Stockholm, Sweden, Aug. 2016.

    無法下載圖示 全文公開日期 2023/10/22 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE