簡易檢索 / 詳目顯示

研究生: Berhane
Berhanemeskel Atsbeha Kahsay
論文名稱: 鋰離子電池新型有機電極材料的簡便合成,表徵和開發
Facile Synthesis, Characterizations, and Development of New Organic Electrode Materials for Lithium-Ion Batteries
指導教授: 王復民
Fu-Ming Wang
口試委員: 胡啟章
Chi-Chang Hu
林正裕
Jeng-Yu Lin
劉偉仁
Wei-Ren Liu
張家欽
Chia-Chin Chang
张正奎
Jeng-Kuei Chang
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 167
中文關鍵詞: Polyisothianaphthene即二鋰N,N-(對-亞苯基)雙馬來酸酯和二鋰N,N-(2-氟-對-亞苯基)雙馬來酸馬來酰胺酸有機電極材料馬來酸鋰操作中X射線吸收光譜鋰離子電池比表面積
外文關鍵詞: Polyisothianaphthene, dilithium N, N- (p-phenylene) bismaleamate, dilithium N, N-(2-Fluoro-p-phenylene) bismaleamate, maleamic acid, organic electrode materials, lithium maleamate, in-operando X-ray absorption spectroscopy, lithium-ion battery, specific surface area
相關次數: 點閱:341下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

高能量密度、環境友善以及價格低廉電極材料被視為決定下一世代鋰離子的關鍵參數。鋰離子電池被廣泛的用於儲能系統、可攜式電子裝置、自動化機械和電動工具中。除此之外,鋰離子電池也被應用在電動汽車上來減少石化燃料以及溫室氣體的排放,進而降低對自然環境的衝擊。以石墨作為鋰離子電池的負極材料,可以有較低的花費,穩定的平台以及提供許多層狀結構供鋰離子嵌入。然而其較低的理論電容量,以及容易長出鋰枝晶的問題,增加了以石墨作為負極材料的鋰離子電池許多安全上以及性能上的疑慮。目前,有許多的方法正在被開發用來取代石墨扮演的負極角色,如使用硫、矽、石墨烯、鍺、過渡金屬氧化物或是有機材料來構築鋰離子電池的負極。其中,為了滿足高能量密度、循環壽命、製備容易以及價格低廉的要求,有機材料被認為是最佳的選項來建構鋰離子電池的負極。在設計上,有機材料為主的電池可以不只是和大多數鹼金屬、鹼土金屬如 Li+, Na+, K+, Mg2+, and Ca2+,也可以減少排放到大氣中的二氧化碳。然而,較差的導電子能力以及容易溶解在電解液的問題,仍然困擾著有機鋰離子電池的發展,也成為有機離子電池開發的首要問題。
導電高分子”PITN” 在所有共軛高分子能隙最小,並具有高導電性,已被研究為具有和鋰離子以及電解液離子作用能力(Li+和PF6-)的氧化還原活性雙極電極材料,其中 n型摻雜/去摻雜反應電位在 0.0 -3.0 V之間(和Li+有關),p-型摻雜/去摻雜的反應電位在1.5-4.5 V之間,而b-型(全有機電池)同時對Li+ 和PF6-離子進行摻雜的電位範圍為0.0-4.0 V的/去摻雜反應。該PITN在n摻雜和p摻雜過程中分別在其環狀C–S–C鍵和苯環上接受鋰和PF6-離子。研究發現,在第一次電化學反應過程中形成了多硫化鋰和硫化鋰。但是,PITN電池的阻抗,速率性能和能量密度不受這些產物所影響。與陽極材料(例如石墨,矽和其他共軛聚合物)相比,此機制呈現了更優異的表現。通過原位X射線吸收光譜,臨場傅立葉變換紅外光譜,場發射電子顯微鏡和X射線光電子能譜研究PITN電極的表面特性。此外,本研究也繼續討論在PITN上進行n摻雜和p摻雜的反應機制。 PITN電極接受的鋰離子在第二個循環中的比容量為730 mAhg-1,與PF6-反應時的比容量為106 mAhg-1。在雙極模式下,電池性能表現出約92 mAhg-1的容量。低帶隙共軛PITN在雙極電化學反應方面顯示出高可逆性,凸顯出此材料在有機鋰離子電池的應用性。
在第二部分的研究中,低分子量有機羰基化合物,馬來酰胺酸和馬來酸鋰,由於其易於合成,低成本和高理論容量而被認為是LIB中有益的儲能材料。馬來酸鋰是通過簡單的濕化學合成方法,以馬來酰胺酸為前驅物合成的。馬來酰胺酸電極具有出色的倍率容量(932 mAg-1時為156 mAhg-1)和循環壽命,經過50次循環後可逆容量為46.6 mAg-1時為455 mAhg-1,平均庫侖效率約為98 %。 MA陽極電極在第一個循環中提供了約685 mAh g-1的可逆容量,並且比馬來酸鋰電極具有更高的倍率容量。有機馬來酰胺酸電極的出色性能和高可逆容量可歸因於其化學結構重整為新的基於氮的高離子擴散化合物。
在最後研究的部分中,我們開發了兩種新的基於雙馬來酸酯的有機陽極材料,即二鋰N,N-(對-亞苯基)雙馬來酸酯(Li2-p-PBM)和二鋰N,N-(2-氟-對-亞苯基)雙馬來酸(Li2-F-p-PBM),包括其通過簡單的濕化學方法合成以及對LIB的電化學研究。使用Brunauer-Emmett-Teller(BET)和Barrett-Joyner-Halenda(BJH)方法測量了這些化合物的比表面積和孔徑分佈,結果表明,氟取代(Li2-F-p-PBM)樣品相較非取代電極(Li2-p-PBM)表現出較大的表面積和孔徑分佈。這表明Li2-F-p-PBM樣品的較高表面積和孔隙率可有助於增強電極界面處的電荷轉移,從而實現更好的電化學性能。 Li2-F-p-PBM的電化學性能顯示出更高的可逆容量(0.1 C時為557 mAhg-1),更好的倍率性能(10 C時為185 mAhg-1)和出色的循環壽命表現。Li2-F-p-PBM電極的優異電化學性能可歸因於氟效應,該效應改善了鋰離子擴散和電子電導率。但是,氟的作用尚未得到充分研究,因此,還需要進一步搭配其他臨場分析技術徹底分析該機制。


High energy density, eco-friendly and low-cost electrode materials are the crucial parameters for the next-generation rechargeable batteries. Lithium-ion batteries (LIBs) are widely used as energy storage systems in portable electronics, automatic machines, and power tools. It also used in electric vehicles to eliminate environmental pollution caused by using fossil fuel and avoid global warming. Graphite is the anode material in commercial LIBs owing to its low working potential, flat plateau, low cost and reversibly insert lithium-ion between its many layer structures. However, graphite only provides low theoretical capacity (372 mAh g−1) and presents a high risk of lithium dendrites growth that prevents increasing energy demand. Recently, several methods are ongoing to replace the graphite anode with new battery architecture such as sulfur, silicon, graphene, germanium, transition metal oxide, and organic-based materials (OEMs). To satisfy the criteria of high energy density, long cycle life, easy fabrication, and the low cost for energy storage, organic materials are the best option. This organic battery design not only because they accept most of the alkali- or alkali-earth metal ions such as Li+, Na+, K+, Mg2+, and Ca2+ for energy storage but also eradicating the carbon-dioxide released to the atmosphere. Organic-based LIBs are among the future promising energy storage rechargeable batteries owing to their easy synthesis, often renewable, cheap, environmentally friendly and deliver much higher theoretical capacities with structural flexibility. However, their poor electronic conductivity and highly soluble in liquid electrolyte still impede their practical application. Hence, the development of organic batteries with high conductivity, high theoretical capacity, and natural abundance can solve the obstacles of the current inorganic batteries.

Conductive polymer, polyisothianaphthene (PITN) has the smallest bandgap among all conjugated polymers and delivers high electrical conductivity, investigated as a redox-active bipolar electrode material with electrolyte ions (Li+ and PF6−): n-type doping/dedoping reaction associated with Li+ binding in a potential range 0.0-3.0 V, p-type doping/dedoping mechanism involved with PF6- binding in a potential range 1.5-4.5 V and b-type (all-organic battery) where both the Li+ and PF6– ions undergo doping/dedoping reaction in a potential range 0.0-4.0 V versus Li/ Li+ is reported in our first approach. This PITN accepts both lithium and PF6- ions on its cyclic C–S–C bond and benzene ring during the processes of n-doping and p-doping respectively. This study discovers that lithium polysulfide and lithium sulfide are formed during the first electrochemical reaction; however, the impedance, rate performance, and energy density of PITN cells are not affected by those side products. By contrast, an increment of superior rate (10 C) testing is significantly improved by those new sulfur-based solid electrolyte interphase formations compared with transitional anode materials, such as graphite, silicon, and other conjugated polymers. The surface characteristics of the PITN electrode are investigated through in situ X-ray absorption spectroscopy, in operando Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. Furthermore, the reaction mechanisms of n-doping and p-doping on PITN are discussed. The PITN electrode’s acceptance of lithium ions exhibits a specific capacity of 730 mAhg-1 at the second cycle as well as of 106 mAhg-1 when it reacts with PF6-. The battery performance exhibits a capacity of approximately 92 mAhg-1 in the bipolar mode. The low-bandgap conjugated PITN is shown to have high reversibility in terms of bipolar electrochemical reactions, which indicates that it can be a promising bipolar organic material for use in lithium-ion batteries.

In the second work, low-molecular-weight organic carbonyl compounds, maleamic acid, and lithium maleamate are considered beneficial energy storage materials in LIBs owing to the ease of their synthesis, low cost, and high theoretical capacity. Lithium maleamate is synthesized by a simple wet chemistry method adopting maleamic acid as a precursor. The maleamic acid electrode delivers a superior rate capability (156 mAhg-1 at 932 mAg-1) and long-term cyclability with a reversible capacity of 455 mAhg-1 at 46.6 mAg-1 after 50 cycles with an average coulombic efficiency of about 98%. The MA anode electrode delivered a high reversible capacity of about 685 mAh g−1 in the first cycle and a higher rate capability than that of the lithium maleamate electrode. The outstanding performance and high reversible capacity of the organic maleamic acid electrode can be attributed to the reforming of its chemical structure into new nitrogen-based highly ionic diffusion compounds.
In the final work, we develop two new bismaleamate-based organic anode materials namely dilithium N, N- (p-phenylene) bismaleamate (Li2-p-PBM), and dilithium N, N-(2-Fluoro-p-phenylene) bismaleamate (Li2-F-p-PBM) including their synthesis via simple wet chemistry method and their electrochemical investigations for LIBs. They have carbonyl groups with carboxylic acid and amide as redox-active centers for lithium-ion insertions. Specific surface area and pore size distribution of these compounds were measured using the Brunauer- Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods revealed that the fluorine substituted (Li2-F-p-PBM) sample exhibits a large BET specific surface area and pore size distribution compared to the non-substituted electrode (Li2-p-PBM) sample. This indicates that the higher surface area and porosity for the Li2-F-p-PBM sample can contribute to enhancing charge transfer at the interface of the electrode ensuing better electrochemical performance. The electrochemical performance for the Li2-F-p-PBM showed a higher reversible capacity (557 mAhg-1 at 0.1 C), better rate performance (185 mAhg-1 at 10 C), and superior cyclability (425 mAhg-1 after 350 cycles at 1 C) in comparison with the unsubstituted electrode. The excellent electrochemical performance of the Li2-F-p-PBM electrode could be attributed to the fluorine effects which improves the lithium-ion diffusion and electronic conductivity. However, the fluorine effect is not fully investigated, therefore, further in-operando techniques are required to figure out thorough.

中文摘要 I Abstract IV Acknowledgments VIII Table of Contents X List of Figures XIV List of Tables XIX List of Schemes XX List of Abbreviations XXI Chapter 1: Introduction 1 1.1 Background of the Study 1 1.2 Principles of Lithium-ion Batteries 2 1.3 Components of Lithium-ion Batteries 3 1.3.1 Anode Materials 3 1.3.2 Cathode Materials 4 1.3.3 Electrolytes 5 1.3.4 Solvents 6 1.3.5 Lithium Salts 7 1.3.6 Electrolyte Additives, Separator, and Current Collector 8 1.4 Solid Electrolyte Interface 10 Chapter 2: Literature Reviews 11 2.1 History and Development of Organic Materials 11 2.2 Principles of Organic Electrode Materials 13 2.3 Organic Carbonyl Compounds 15 2.3.1 Conjugated Carboxylates 16 2.3.2 Adjustment of the Working Potentials 17 2.3.3 Non-conjugated compounds 18 2.4 Conductive Polymers 19 2.3.1 Polyisothianaphthene 21 2.5 Research Innovation 23 Chapter 3: Experimental Part 25 3.1 Research Design 25 3.2 Chemicals and Reagents 26 3.3 Equipment 27 3.4 Experimental Procedures 27 3.4.1 Synthesis of Poly(isothianaphthene) 27 3.4.2 Synthesis of N, N-(p-phenylene) Bismaleamic Acid 28 3.4.3 Synthesis of Dilithium N, N-(p-phenylene) Bismaleamate 28 3.4.4 Synthesis of 2-fluoro-benzene-1, 4-diamine 29 3.4.5 Synthesis of N, N-(2-Fluoro-p-Phenylene) Bismaleamic Acid 29 3.4.6 Synthesis of Dilithium N, N-(2-Fluoro-p-Phenylene) Bismaleamate 30 3.4.7 Synthesis of Lithium Maleamate 30 3.5 Electrochemical Measurements 31 3.5.1 Electrode Preparation and Coin Cell Assembly 31 3.5.2 Galvanostatic Charge-discharge Techniques 32 3.5.3 Cyclic Voltammetry 33 3.5.4 Electrochemical Impedance Spectroscopy 34 3.6 Characterization Techniques 35 3.6.1 Scanning Electron Microscopy 35 3.6.2 Differential Scanning Calorimetry 36 3.6.3 X-ray Photoelectron Spectroscopy 37 3.6.4 Attenuated Total Reflectance -Fourier Transform Infrared Spectroscopy 39 3.6.5 X-ray Powder Diffraction 40 3.6.6 X-ray Absorption Spectroscopy 42 3.6.7 Nuclear Magnetic Resonance 43 3.6.8 Brunauer-Emmett-Teller Analysis 44 3.6.9 Computational Analysis 44 Chapter 4: Investigating an All-organic battery using Polyisothianaphthene as a Redox-active Bipolar Electrode Material 45 4.1 Introduction 45 4.2 Experimental Section 48 4.3 Results and Discussion 48 4.3.1 Electrochemical Characterization 50 4.3.2 Morphology Analysis 57 4.3.3 XPS Analysis 58 4.3.4 Electrochemical Impedance Spectroscopy 61 4.3.5 In-operando XAS and FTIR Analysis 63 4.3.6 PITN-PITN Full Cells 66 4.3.7 Proposes Possible Reaction Mechanisms 67 4.4 Summary 68 Chapter 5: Development of Lithium Maleamate and its Corresponding Maleamic Acid as Organic Anode for Lithium-ion Batteries 69 5.1 Introduction 69 5.2 Experimental Section 71 5.3 Results and Discussion 71 5.3.1 Electrochemical Performance Maleamic Acid 75 5.3.2 Electrochemical Impedance Spectroscopy Analysis of Maleamic acid 79 5.3.3 Morphological Analysis of Maleamic Acid 81 5.3.4 X-ray Photoelectron Spectroscopy of Analysis 82 5.3.5 Electrochemical Performance of Lithium Maleamate 84 5.3.6 Morphological Analysis of Lithium Maleamate 86 5.4 Summary 88 Chapter 6: Synthesis, characteristics and electrochemical performances of N, N-(p-phenylene) bismaleamate and its fluoro-substitution compound on organic anode materials in lithium-ion battery 89 6.1 Introduction 89 6.2 Experimental Section 92 6.3 Results and Discussion 93 6.3.1 Electrochemical Cycling 100 6.3.2 Electrochemical Impedance Spectroscopy Analysis 105 6.3.3 Morphology Analysis 107 6.3.4 X-ray Photoelectron Spectroscopy Analysis 108 6.3.5 In-operando XRD Analysis 112 6.3.6 Proposed Lithium Storage Mechanisms 114 6.4 Summary 115 Chapter 7: Conclusions and Outlooks 116 References 118 Appendix A: Supporting data for Chapter 6 141

1. Jeong, G., et al., Prospective materials and applications for Li secondary batteries. Energy & Environmental Science, 2011. 4(6): p. 1986-2002.
2. Yang, Z., et al., Electrochemical Energy Storage for Green Grid. Chemical Reviews, 2011. 111(5): p. 3577-3613.
3. Linden, D. and T.B. Reddy, Handbook of Batteries. 3rd. McGraw-Hill, 2002.
4. Dunn, B., H. Kamath, and J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science, 2011. 334(6058): p. 928-935.
5. Tarascon, J.-M. and M. Armand, Issues and challenges facing rechargeable lithium batteries, in Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. 2011, World Scientific. p. 171-179.
6. Wakihara, M., Recent developments in lithium ion batteries. Materials Science and Engineering: R: Reports, 2001. 33(4): p. 109-134.
7. Scrosati, B. and J. Garche, Lithium batteries: Status, prospects and future. Journal of Power Sources, 2010. 195(9): p. 2419-2430.
8. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical reviews, 2004. 104(10): p. 4303-4418.
9. Fu, R., et al., Comparison of Lithium-Ion Anode Materials Using an Experimentally Verified Physics-Based Electrochemical Model. Energies, 2017. 10(12): p. 2174.
10. Xu, W., et al., Lithium metal anodes for rechargeable batteries. Energy & Environmental Science, 2014. 7(2): p. 513-537.
11. Goriparti, S., et al., Review on recent progress of nanostructured anode materials for Li-ion batteries. Journal of power sources, 2014. 257: p. 421-443.
12. Liu, L., et al., Superior cycle performance and high reversible capacity of SnO 2/graphene composite as an anode material for lithium-ion batteries. Scientific reports, 2015. 5: p. 9055.
13. Whittingham, M.S., Lithium Batteries, and Cathode Materials. Chemical Reviews, 2004. 104(10): p. 4271-4302.
14. Amereller, M., et al., Electrolytes for lithium and lithium ion batteries: From synthesis of novel lithium borates and ionic liquids to development of novel measurement methods. Progress in Solid State Chemistry, 2014. 42(4): p. 39-56.
15. Chen, Z., Z. Zhang, and K. Amine, High Performance Lithium-Ion Batteries Using Fluorinated Compounds, in Advanced Fluoride-Based Materials for Energy Conversion. 2015. p. 1-31.
16. Kita, F., et al., Characteristics of the electrolyte with fluoro organic lithium salts. Journal of Power Sources, 2000. 90(1): p. 27-32.
17. Chen, H., et al., Lithium Salt of Tetrahydroxybenzoquinone: Toward the Development of a Sustainable Li-Ion Battery. Journal of the American Chemical Society, 2009. 131(25): p. 8984-8988.
18. Agubra, V.A. and J.W. Fergus, The formation and stability of the solid electrolyte interface on the graphite anode. Journal of Power Sources, 2014. 268: p. 153-162.
19. Zhang, S.S., A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources, 2006. 162(2): p. 1379-1394.
20. Deimede, V. and C. Elmasides, Separators for lithium‐ion batteries: a review on the production processes and recent developments. Energy technology, 2015. 3(5): p. 453-468.
21. Zhang, S.S., A review on the separators of liquid electrolyte Li-ion batteries. Journal of Power Sources, 2007. 164(1): p. 351-364.
22. Fong, R., U. Von Sacken, and J.R. Dahn, Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. Journal of The Electrochemical Society, 1990. 137(7): p. 2009-2013.
23. Haregewoin, A.M., A.S. Wotango, and B.-J. Hwang, Electrolyte additives for lithium ion battery electrodes: progress and perspectives. Energy & Environmental Science, 2016. 9(6): p. 1955-1988.
24. Verma, P., P. Maire, and P. Novák, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta, 2010. 55(22): p. 6332-6341.
25. Shirakawa, H., et al., Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH). Journal of the Chemical Society, Chemical Communications, 1977(16): p. 578-580.
26. Neves, S. and C. Polo Fonseca, Influence of template synthesis on the performance of polyaniline cathodes. Journal of Power Sources, 2002. 107(1): p. 13-17.
27. Aydin, M. and B. Esat, A polythiophene derivative bearing two electroactive groups per monomer as a cathode material for rechargeable batteries. Journal of Solid State Electrochemistry, 2015. 19(8): p. 2275-2281.
28. Schon, T.B., et al., Bio‐Derived Polymers for Sustainable Lithium‐Ion Batteries. Advanced Functional Materials, 2016. 26(38): p. 6896-6903.
29. Williams, D., J. Byrne, and J. Driscoll, A high energy density lithium/dichloroisocyanuric acid battery system. Journal of The Electrochemical Society, 1969. 116(1): p. 2-4.
30. Liang, Y., Z. Tao, and J. Chen, Organic electrode materials for rechargeable lithium batteries. Advanced Energy Materials, 2012. 2(7): p. 742-769.
31. Song, Z. and H. Zhou, Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. Energy Environ. Sci., 2013. 6(8): p. 2280-2301.
32. Kahsay, B.A., et al., Investigating an all-organic battery using polyisothianaphthene as a redox-active bipolar electrode material. J. Power Sources., 2019. 428: p. 115-123.
33. Kim, J., et al., Conductive polymers for next-generation energy storage systems: recent progress and new functions. Materials Horizons, 2016. 3(6): p. 517-535.
34. Kumar, R., S. Singh, and B. Yadav, Conducting polymers: synthesis, properties and applications. International Advanced Research Journal in Science, Engineering and Technology, 2015. 2(11): p. 110-124.
35. Vlad, A., et al., Exploring the potential of polymer battery cathodes with electrically conductive molecular backbone. Journal of Materials Chemistry A, 2015. 3(21): p. 11189-11193.
36. Häupler, B., A. Wild, and U.S. Schubert, Carbonyls: powerful organic materials for secondary batteries. Advanced Energy Materials, 2015. 5(11): p. 1402034.
37. Larcher, D. and J.-M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nature chemistry, 2015. 7(1): p. 19.
38. Wang, L., et al., Dicarboxylate CaC 8 H 4 O 4 as a high-performance anode for Li-ion batteries. Nano Research, 2015. 8(2): p. 523-532.
39. Visco, S.J. and L.C. DeJonghe, Ionic conductivity of organosulfur melts for advanced storage electrodes. Journal of The Electrochemical Society, 1988. 135(12): p. 2905-2909.
40. Guo, W., et al., Superior radical polymer cathode material with a two-electron process redox reaction promoted by graphene. Energy & Environmental Science, 2012. 5(1): p. 5221-5225.
41. Oyaizu, K. and H. Nishide, Radical polymers for organic electronic devices: a radical departure from conjugated polymers? Advanced Materials, 2009. 21(22): p. 2339-2344.
42. Suga, T., et al., Emerging N‐Type Redox‐Active Radical Polymer for a Totally Organic Polymer‐Based Rechargeable Battery. Advanced Materials, 2009. 21(16): p. 1627-1630.
43. Zhao, Q., Y. Lu, and J. Chen, Advanced Organic Electrode Materials for Rechargeable Sodium‐Ion Batteries. Adv. Energy Mater., 2017. 7(8): p. 1601792.
44. Lee, M., et al., Organic nanohybrids for fast and sustainable energy storage. Advanced Materials, 2014. 26(16): p. 2558-2565.
45. Liang, Y., et al., Fused Heteroaromatic Organic Compounds for High‐Power Electrodes of Rechargeable Lithium Batteries. Advanced Energy Materials, 2013. 3(5): p. 600-605.
46. Li, H., et al., 2,2[prime or minute]-Bis(3-hydroxy-1,4-naphthoquinone)/CMK-3 nanocomposite as cathode material for lithium-ion batteries. Inorganic Chemistry Frontiers, 2014. 1(2): p. 193-199.
47. Renault, S., et al., Improving the electrochemical performance of organic Li-ion battery electrodes. Chemical Communications, 2013. 49(19): p. 1945-1947.
48. Bostjan, G., et al., Electroactive Organic Molecules Immobilized onto Solid Nanoparticles as a Cathode Material for Lithium‐Ion Batteries. Angewandte Chemie International Edition, 2010. 49(40): p. 7222-7224.
49. Song, Z., H. Zhan, and Y. Zhou, Polyimides: promising energy‐storage materials. Angewandte Chemie International Edition, 2010. 49(45): p. 8444-8448.
50. Zhu, Z., et al., All-solid-state lithium organic battery with composite polymer electrolyte and pillar [5] quinone cathode. Journal of the American Chemical Society, 2014. 136(47): p. 16461-16464.
51. Zhao, Q., et al., batteries with electrodes of small organic rechargeable lithium c carbonyl salts and advanced electrolytes. Industrial & Engineering Chemistry Research, 2016. 55(20): p. 5795-5804.
52. Häupler, B., A. Wild, and U.S. Schubert, Carbonyls: Powerful Organic Materials for Secondary Batteries. Adv. Energy Mater., 2015. 5(11): p. 1402034.
53. Xie, J., P. Gu, and Q. Zhang, Nanostructured conjugated polymers: toward high-performance organic electrodes for rechargeable batteries. ACS Energy Letters, 2017. 2(9): p. 1985-1996.
54. Liang, Y., P. Zhang, and J. Chen, Function-oriented design of conjugated carbonyl compound electrodes for high energy lithium batteries. Chemical Science, 2013. 4(3).
55. Zhao, Q., et al., Rechargeable Lithium Batteries with Electrodes of Small Organic Carbonyl Salts and Advanced Electrolytes. Ind. Eng. Chem., 2016. 55(20): p. 5795-5804.
56. Bhosale, M.E., et al., Organic small molecules and polymers as an electrode material for rechargeable lithium ion batteries. Journal of Materials Chemistry A, 2018. 6(41): p. 19885-19911.
57. Lu, Y., et al., Design strategies toward enhancing the performance of organic electrode materials in metal-ion batteries. Chem, 2018. 4(12): p. 2786-2813.
58. Ma, C., et al., Non‐Conjugated Dicarboxylate Anode Materials for Electrochemical Cells. Angewandte Chemie, 2018. 130(29): p. 9003-9008.
59. Wu, D., et al., A low-cost non-conjugated dicarboxylate coupled with reduced graphene oxide for stable sodium-organic batteries. Journal of Power Sources, 2018. 398: p. 99-105.
60. Inzelt, G., Historical Background (Or: There Is Nothing New Under the Sun). Conducting Polymers: A New Era in Electrochemistry, 2008: p. 265-269.
61. Kaneto, K., et al., Optical and electrical properties of electrochemically doped n-and p-type polythiophenes. Japanese Journal of Applied Physics, 1984. 23(3A): p. L189.
62. Kausar, A. and M. Siddiq, Conducting Polymer/Graphene Filler-based Hybrids: Energy and Electronic Applications. Editor: A. Méndez-Vilas & A. Solano-Martín Polymer Science: Research Advances, Practical Applications, and Educational Aspects. Formatex Research Center: p. 177-87.
63. Diaz, A., J. Bargon, and T. Skotheim, Handbook of conducting polymers. TA Skotheim Ed, 1986. 1: p. 82-100.
64. Chien, J., Polyacetylene—Physics, Chemistry and Material Science. Academic, New York, 1984.
65. Xie, J., et al., Nanostructured Conjugated Polymers for Energy‐Related Applications Beyond Solar Cells. Chemistry–An Asian Journal, 2016. 11(10): p. 1489-1511.
66. Harun, M.H., et al., Conjugated conducting polymers: A brief overview. UCSI Academic Journal: Journal for the Advancement of Science & Arts, 2007. 2: p. 63-68.
67. Bredas, J.L. and G.B. Street, Polarons, bipolarons, and solitons in conducting polymers. Accounts of Chemical Research, 1985. 18(10): p. 309-315.
68. Bandey, H.L., et al., In Situ Electron Spin Resonance Study of n‐and p‐Doping of Polyterthiophene. Journal of The Electrochemical Society, 1995. 142(7): p. 2111-2118.
69. Chowdhury, A.-N., et al., p-and n-type conductance of electrochemically synthesized poly (3-methyl thiophene) films. Electrochimica acta, 1996. 41(13): p. 1993-1997.
70. Arbizzani, C., et al., N-and P-doped Polydithieno [3, 4-B: 3′, 4′-D] thiophene: A narrow band gap polymer for redox supercapacitors. Electrochimica Acta, 1995. 40(12): p. 1871-1876.
71. Zhu, L., et al., An all-organic rechargeable battery using bipolar polyparaphenylene as a redox-active cathode and anode. Chemical Communications, 2013. 49(6): p. 567-569.
72. Mohammadi, A., O. Inganäs, and I. Lundström, Properties of Polypyrrole‐Electrolyte‐Polypyrrole Cells. Journal of the Electrochemical Society, 1986. 133(5): p. 947-949.
73. Neves, S. and C.P. Fonseca, Influence of template synthesis on the performance of polyaniline cathodes. Journal of power sources, 2002. 107(1): p. 13-17.
74. Numazawa, H., et al., Multistage redox reactions of conductive-polymer nanostructures with lithium ions: potential for high-performance organic anodes. NPG Asia Materials, 2018: p. 1.
75. Sengodu, P. and A.D. Deshmukh, Conducting polymers and their inorganic composites for advanced Li-ion batteries: a review. Rsc Advances, 2015. 5(52): p. 42109-42130.
76. Kumar, D. and R. Sharma, Advances in conductive polymers. European polymer journal, 1998. 34(8): p. 1053-1060.
77. Li, Y., Organic optoelectronic materials. 2016: Springer.
78. Roncali, J., Synthetic principles for bandgap control in linear π-conjugated systems. Chemical reviews, 1997. 97(1): p. 173-206.
79. Kobayashi, M., et al., The electronic and electrochemical properties of poly (isothianaphthene). The Journal of chemical physics, 1985. 82(12): p. 5717-5723.
80. Brédas, J., A. Heeger, and F. Wudl, Towards organic polymers with very small intrinsic band gaps. I. Electronic structure of polyisothianaphthene and derivatives. The Journal of chemical physics, 1986. 85(8): p. 4673-4678.
81. Hoogmartens, I., et al., Novel chemical syntheses of poly (isothianaphthene). 1992.
82. Jen, K.-y. and R. Elsenbaumer, Facile preparation of electrically conductive poly (isothianaphthene). Synthetic metals, 1986. 16(3): p. 379-380.
83. Rose, T. and M. Liberto, Conversion of poly (dihydroisothianaphthene) films to conductive poly (isothianaphthene). Synthetic metals, 1989. 31(3): p. 395-398.
84. van Asselt, R., et al., New synthetic routes to poly(isothianaphthene). II. Mechanistic aspects of the reactions of phthalic anhydride and phthalide with phosphorus pentasulfide. Journal of Polymer Science Part A: Polymer Chemistry, 1996. 34(8): p. 1553-1560.
85. RobertáHillman, A., Spectroelectrochemical observation of poly (benzo [c] thiophene) n-and p-doping. Journal of Materials Chemistry, 1992. 2(1): p. 99-104.
86. Ramar, A., et al., Polyisothianaphthene/graphene nanocomposite as a new counter electrode material for high performance dye sensitized solar cell. Synthetic Metals, 2017. 230: p. 58-64.
87. van Asselt, R., et al., New synthetic routes to poly (isothianaphthene). II. Mechanistic aspects of the reactions of phthalic anhydride and phthalide with phosphorus pentasulfide. Journal of Polymer Science Part A: Polymer Chemistry, 1996. 34(8): p. 1553-1560.
88. Paulussen, H., et al., New mechanistic aspects on the formation of poly (isothianaphthene) from P4S10 and phthalic anhydride derivatives: carbon–carbon bond formation and cleavage via a cyclic reaction mechanism. Polymer, 2000. 41(9): p. 3121-3127.
89. Zhang, L., et al., Synthesis, characterization, and curing kinetics of novel bismaleimide monomers containing fluorene cardo group and aryl ether linkage. Designed monomers and polymers, 2014. 17(7): p. 637-646.
90. Armand, M., et al., Conjugated dicarboxylate anodes for Li-ion batteries. Nat Mater., 2009. 8(2): p. 120-5.
91. Orphanides, G.G., Preparation of maleimides and dimaleimides. 1979, Google Patents.
92. Mekonnen, Y., A. Sundararajan, and A.I. Sarwat. A review of cathode and anode materials for lithium-ion batteries. in SoutheastCon 2016. 2016. IEEE.
93. Hou, R., et al., Chapter 23 - Power Electronic Systems and Control in Automobiles, in Control of Power Electronic Converters and Systems, F. Blaabjerg, Editor. 2018, Academic Press. p. 309-332.
94. Li, S.E., et al., An electrochemistry-based impedance model for lithium-ion batteries. Journal of Power Sources, 2014. 258: p. 9-18.
95. Andre, D., et al., Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. II: Modelling. Journal of Power Sources, 2011. 196(12): p. 5349-5356.
96. Stokes, D., Principles and practice of variable pressure: environmental scanning electron microscopy (VP-ESEM). 2008: John Wiley & Sons.
97. Kazarian, S.G. and K.A. Chan, Micro-and macro-attenuated total reflection Fourier transform infrared spectroscopic imaging. Applied spectroscopy, 2010. 64(5): p. 135A-152A.
98. Jalilehvand, F., Structure of hydrated ions and cyano complexes by x-absorption spectroscopy. 2000, Kemi.
99. Sing, K.S., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and applied chemistry, 1985. 57(4): p. 603-619.
100. Burch, I. and J. Gilchrist, Survey of global activity to phase out internal combustion engine vehicles. Center of Climate Protection: Santa Rosa, CA, USA, 2018.
101. Shi, Y., G. Chen, and Z. Chen, Effective regeneration of LiCoO 2 from spent lithium-ion batteries: a direct approach towards high-performance active particles. Green chemistry, 2018. 20(4): p. 851-862.
102. Sakaushi, K., et al., Aromatic porous-honeycomb electrodes for a sodium-organic energy storage device. Nature communications, 2013. 4: p. 1485.
103. Sun, T., et al., A Biodegradable Polydopamine‐Derived Electrode Material for High‐Capacity and Long‐Life Lithium‐Ion and Sodium‐Ion Batteries. Angewandte Chemie International Edition, 2016. 55(36): p. 10662-10666.
104. Zhan, X., Z. Chen, and Q. Zhang, Recent progress in two-dimensional COFs for energy-related applications. Journal of Materials Chemistry A, 2017. 5(28): p. 14463-14479.
105. Zhang, S., et al., Conjugated microporous polymers with excellent electrochemical performance for lithium and sodium storage. Journal of Materials Chemistry A, 2015. 3(5): p. 1896-1901.
106. Wu, J., et al., Pushing up lithium storage through nanostructured polyazaacene analogues as anode. Angewandte Chemie International Edition, 2015. 54(25): p. 7354-7358.
107. Wu, J., et al., Pushing Up Lithium Storage through Nanostructured Polyazaacene Analogues as Anode. Angew Chem Int Ed Engl, 2015. 54(25): p. 7354-8.
108. Bakhshi, A. and J. Ladik, On the electronic properties of polyisothianaphthene. Solid state communications, 1987. 61(1): p. 71-73.
109. van Asselt, R., et al., New synthetic routes to poly (isothianaphthene) I. Reaction of phthalic anhydride and phthalide with phosphorus pentasulfide. Synthetic metals, 1995. 74(1): p. 65-70.
110. Ramar, A., et al., TiO2/polyisothianaphthene—A novel hybrid nanocomposite as highly efficient photoanode in dye sensitized solar cell. Journal of Photochemistry and Photobiology A: Chemistry, 2016. 329: p. 96-104.
111. Ding, B., et al., An in situ confinement strategy to porous poly (3, 4-ethylenedioxythiophene)/sulfur composites for lithium–sulfur batteries. RSC Advances, 2016. 6(53): p. 47858-47863.
112. Ji, X., K.T. Lee, and L.F. Nazar, A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nature materials, 2009. 8(6): p. 500.
113. Yang, Z., et al., In situ incorporation of a S, N doped carbon/sulfur composite for lithium sulfur batteries. RSC Advances, 2015. 5(95): p. 78017-78025.
114. Beamson, G. and D. Briggs, High resolution monochromated X-ray photoelectron spectroscopy of organic polymers: A comparison between solid state data for organic polymers and gas phase data for small molecules. Molecular Physics, 1992. 76(4): p. 919-936.
115. Razzaq, A.A., et al., High-performance lithium sulfur batteries enabled by a synergy between sulfur and carbon nanotubes. Energy Storage Materials, 2019. 16: p. 194-202.
116. Ai, W., et al., A novel graphene-polysulfide anode material for high-performance lithium-ion batteries. Scientific reports, 2013. 3: p. 2341.
117. Wang, F.-M., et al., Robust Benzimidazole-Based Electrolyte Overcomes High-Voltage and High-Temperature Applications in 5 V Class Lithium Ion Batteries. Chemistry of Materials, 2017. 29(13): p. 5537-5549.
118. Wang, F.-M., J.-C. Wang, and J. Rick, Forward and reverse differential-pulse effects applied in the formation of a solid electrolyte interface to enhance the performance of lithium batteries. Electrochimica Acta, 2014. 147: p. 582-588.
119. Cheng, C.-S., W.-R. Liu, and F.-M. Wang, A novel ionic host solid electrolyte interface formation on reduced graphene oxide of lithium ion battery. Electrochimica Acta, 2013. 106: p. 425-431.
120. Zhang, L., et al., Electronic structure and chemical bonding of a graphene oxide–sulfur nanocomposite for use in superior performance lithium–sulfur cells. Physical Chemistry Chemical Physics, 2012. 14(39): p. 13670-13675.
121. Gu, W., et al., Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors: a case study for pseudocapacitance detection. Energy & Environmental Science, 2013. 6(8): p. 2465-2476.
122. Fantauzzi, M., et al., Exploiting XPS for the identification of sulfides and polysulfides. RSC Advances, 2015. 5(93): p. 75953-75963.
123. Diao, Y., et al., Insights into Li-S battery cathode capacity fading mechanisms: irreversible oxidation of active mass during cycling. Journal of The Electrochemical Society, 2012. 159(11): p. A1816-A1821.
124. Ota, H., et al., Characterization of lithium electrode in lithium imides/ethylene carbonate and cyclic ether electrolytes II. Surface chemistry. Journal of The Electrochemical Society, 2004. 151(3): p. A437-A446.
125. Aurbach, D., et al., On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. Journal of The Electrochemical Society, 2009. 156(8): p. A694-A702.
126. Li, W., et al., The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nature communications, 2015. 6: p. 7436.
127. Liang, X., et al., A highly efficient polysulfide mediator for lithium–sulfur batteries. Nature communications, 2015. 6: p. 5682.
128. Li, G., et al., Organosulfide-plasticized solid-electrolyte interphase layer enables stable lithium metal anodes for long-cycle lithium-sulfur batteries. Nature communications, 2017. 8(1): p. 850.
129. Chen, S., et al., Functional organosulfide electrolyte promotes an alternate reaction pathway to achieve high performance in lithium–sulfur batteries. Angewandte Chemie International Edition, 2016. 55(13): p. 4231-4235.
130. Gorlin, Y., et al., Understanding the charging mechanism of lithium-sulfur batteries using spatially resolved operando X-ray absorption spectroscopy. Journal of The Electrochemical Society, 2016. 163(6): p. A930-A939.
131. Winter, I., J. Hormes, and M. Hiller, Thermal ageing of electrically conducting polymers: XANES measurements of polythiophenes. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1995. 97(1-4): p. 287-291.
132. Dominko, R., et al., Polysulfides formation in different electrolytes from the perspective of X-ray absorption spectroscopy. Journal of The Electrochemical Society, 2018. 165(1): p. A5014-A5019.
133. Patel, M.U., et al., X‐ray absorption near‐edge structure and nuclear magnetic resonance study of the lithium–sulfur battery and its components. ChemPhysChem, 2014. 15(5): p. 894-904.
134. Ye, Y., et al., X-ray absorption spectroscopy characterization of a Li/S cell. Nanomaterials, 2016. 6(1): p. 14.
135. Feng, X., et al., Understanding the degradation mechanism of rechargeable lithium/sulfur cells: a comprehensive study of the sulfur–graphene oxide cathode after discharge–charge cycling. Physical Chemistry Chemical Physics, 2014. 16(32): p. 16931-16940.
136. Braun, A., et al., Molecular speciation of sulfur in solid oxide fuel cell anodes with X-ray absorption spectroscopy. Journal of Power Sources, 2008. 183(2): p. 564-570.
137. Lubis, P. and M. Saito, Band gap design of thiophene polymers based on density functional theory. Japanese Journal of Applied Physics, 2014. 53(7): p. 071602.
138. Liang, Y. and Y. Yao, Positioning organic electrode materials in the battery landscape. Joule, 2018. 2(9): p. 1690-1706.
139. Dunn, B., H. Kamath, and J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. sci. , 2011. 334(6058): p. 928-935.
140. Goodenough, J.B. and K.-S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc., 2013. 135(4): p. 1167-1176.
141. Moriwake, H., et al., Why is sodium-intercalated graphite unstable? RSC Adv., 2017. 7(58): p. 36550-36554.
142. Cheng, X.-B., et al., Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev., 2017. 117(15): p. 10403-10473.
143. Muench, S., et al., Polymer-Based Organic Batteries. Chem. Rev., 2016. 116(16): p. 9438-9484.
144. Wu, M., et al., Organotrisulfide: A high capacity cathode material for rechargeable lithium batteries. Angew. Chem. Int. Ed., 2016. 55(34): p. 10027-10031.
145. Nakahara, K., et al., Rechargeable batteries with organic radical cathodes. Chem. Phys. Lett., 2002. 359(5): p. 351-354.
146. Song, Z. and H. Zhou, Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. Energy Environ. Sci., 2013. 6(8).
147. Zhang, Y.Y., et al., Organic salts as super-high rate capability materials for lithium-ion batteries. Appl. Phys. Lett., 2012. 100(9).
148. Luo, C., et al., Azo compounds as a family of organic electrode materials for alkali-ion batteries. Proceedings of the National Academy of Sciences, 2018. 115(9): p. 2004.
149. Lu, Y., et al., Design strategies toward enhancing the performance of organic electrode materials in metal-ion batteries. Chem, 2018.
150. Sharma, P., et al., Perylene-polyimide-based organic electrode materials for rechargeable lithium batteries. The Journal of Physical Chemistry Letters, 2013. 4(19): p. 3192-3197.
151. Guo, C., et al., High-performance sodium batteries with the 9,10-anthraquinone/CMK-3 cathode and an ether-based electrolyte. ChemComm, 2015. 51(50): p. 10244-10247.
152. Huang, W., et al., Quasi‐Solid‐State Rechargeable Lithium‐Ion Batteries with a Calix [4] quinone Cathode and Gel Polymer Electrolyte. Angew. Chem. Int. Ed., 2013. 52(35): p. 9162-9166.
153. Armand, M., et al., Conjugated dicarboxylate anodes for Li-ion batteries. Nature Materials, 2009. 8(2): p. 120-125.
154. Lyu, H., et al., Polythiophene coated aromatic polyimide enabled ultrafast and sustainable lithium ion batteries. J. Mater. Chem. A, 2017. 5(46): p. 24083-24090.
155. Siwal, S.S., et al., Carbon-based polymer nanocomposite for high-performance energy storage applications. Polym. J., 2020. 12(3): p. 505.
156. Lyu, H., et al., Aromatic polyimide/graphene composite organic cathodes for fast and sustainable lithium‐ion batteries. ChemSusChem, 2018. 11(4): p. 763-772.
157. Rodríguez-Pérez, I.A., et al., Mg-Ion Battery Electrode: An Organic Solid’s Herringbone Structure Squeezed upon Mg-Ion Insertion. J. Am. Chem. Soc., 2017. 139(37): p. 13031-13037.
158. Muench, S., et al., Polymer-based organic batteries. Chem. Rev., 2016. 116(16): p. 9438-9484.
159. Fédèle, L., et al., Lithium insertion/de-insertion properties of π-extended naphthyl-based dicarboxylate electrode synthesized by freeze-drying. J. Electrochem., 2014. 161(1): p. A46-A52.
160. Chen, H., et al., From biomass to a renewable LixC6O6 organic electrode for sustainable Li‐ion batteries. ChemSusChem, 2008. 1(4): p. 348-355.
161. Walker, W., et al., The effect of length and cis/trans relationship of conjugated pathway on secondary battery performance in organolithium electrodes. Electrochem. commun., 2010. 12(10): p. 1348-1351.
162. Wang, Y., et al., Ultrahigh-capacity organic anode with high-rate capability and long cycle life for lithium-ion batteries. ACS Energy Lett., 2017. 2(9): p. 2140-2148.
163. Armand, M., et al., Conjugated dicarboxylate anodes for Li-ion batteries. Nature materials, 2009. 8(2): p. 120.
164. Ryou, M.-H., et al., Effects of lithium salts on thermal stabilities of lithium alkyl carbonates in SEI layer. Electrochimica Acta, 2012. 83: p. 259-263.
165. Song, Z., et al., A quinone-based oligomeric lithium salt for superior Li–organic batteries. Energy Environ. Sci., 2014. 7(12): p. 4077-4086.
166. Goriparti, S., M.N.K. Harish, and S. Sampath, Ellagic acid – a novel organic electrode material for high capacity lithium ion batteries. ChemComm, 2013. 49(65): p. 7234-7236.
167. Abouimrane, A., et al., Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells. Energy Environ. Sci., 2012. 5(11): p. 9632-9638.
168. Deng, Q., et al., The electrochemical behaviors of Li2C8H4O6 and its corresponding organic acid C8H6O6 as anodes for Li-ion batteries. J. Electroanal. Chem. , 2016. 761: p. 74-79.
169. Wang, Z.-L., et al., In situ fabrication of porous graphene electrodes for high-performance energy storage. ACS nano, 2013. 7(3): p. 2422-2430.
170. Wang, S., et al., Organic Li4C8H2O6 nanosheets for lithium-ion batteries. Nano Lett., 2013. 13(9): p. 4404-4409.
171. Zhao, R.R., et al., Reversible Li and Na storage behaviors of perylenetetracarboxylates as organic anodes for Li- and Na-ion batteries. J ELECTROANAL CHEM., 2013. 688: p. 93-97.
172. Chen, L., et al., OH-substituted 2, 3-dichloro-5, 6-dicyano-1, 4-benzoquinone as highly stable organic electrode for lithium ion battery. Electrochim. Acta, 2017. 258: p. 677-683.
173. Peng, B., et al., The electrochemical performance of super P carbon black in reversible Li/Na ion uptake. SCI CHINA PHYS MECH., 2017. 60(6): p. 064611.
174. An, S.J., et al., The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon, 2016. 105: p. 52-76.
175. Światowska, J., et al., XPS, XRD and SEM characterization of a thin ceria layer deposited onto graphite electrode for application in lithium-ion batteries. Appl. Surf., 2011. 257(21): p. 9110-9119.
176. Zhao, L., et al., TG-MS analysis of solid electrolyte interphase (SEI) on graphite negative-electrode in lithium-ion batteries. J. Power Sources., 2006. 161(2): p. 1275-1280.
177. Dedryvère, R., et al., XPS valence characterization of lithium salts as a tool to study electrode/electrolyte interfaces of Li-ion batteries. J. Phys. Chem. B, 2006. 110(26): p. 12986-12992.
178. Veerababu, M., U.V. Varadaraju, and R. Kothandaraman, Reversible lithium storage behaviour of aromatic diimide dilithium carboxylates. Electrochimica Acta, 2016. 193: p. 80-87.
179. An, Y., et al., Green, scalable, and controllable fabrication of nanoporous silicon from commercial alloy precursors for high-energy lithium-ion batteries. ACS nano, 2018. 12(5): p. 4993-5002.
180. Reddy, A.L.M., et al., Lithium storage mechanisms in purpurin based organic lithium ion battery electrodes. Scientific reports, 2012. 2: p. 960.
181. Chen, H., et al., From biomass to a renewable LixC6O6 organic electrode for sustainable Li‐ion batteries. ChemSusChem: Chemistry & Sustainability Energy & Materials, 2008. 1(4): p. 348-355.
182. Lee, S., et al., Recent progress in organic electrodes for Li and Na rechargeable batteries. Advanced materials, 2018. 30(42): p. 1704682.
183. Zhao, Q., Y. Lu, and J. Chen, Advanced Organic Electrode Materials for Rechargeable Sodium‐Ion Batteries. Advanced Energy Materials, 2017. 7(8): p. 1601792.
184. Veerababu, M., U. Varadaraju, and R. Kothandaraman, Reversible lithium storage behaviour of aromatic diimide dilithium carboxylates. Electrochimica Acta, 2016. 193: p. 80-87.
185. Shimizu, A., et al., Introduction of two lithiooxycarbonyl groups enhances cyclability of lithium batteries with organic cathode materials. Journal of Power Sources, 2014. 260: p. 211-217.
186. Wu, X., et al., Unraveling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries. Science advances, 2015. 1(8): p. e1500330.
187. Guo, C., et al., High-performance sodium batteries with the 9, 10-anthraquinone/CMK-3 cathode and an ether-based electrolyte. Chemical Communications, 2015. 51(50): p. 10244-10247.
188. Renault, S., et al., Improving the electrochemical performance of organic Li-ion battery electrodes. Chemical Communications, 2013. 49(19): p. 1945-1947.
189. Song, Z., et al., Stable li–organic batteries with nafion‐based sandwich‐type separators. Advanced Energy Materials, 2016. 6(7): p. 1501780.
190. Babudri, F., et al., Fluorinated organic materials for electronic and optoelectronic applications: the role of the fluorine atom. Chemical Communications, 2007(10): p. 1003-1022.
191. Li, H. and L.-Z. Fan, Effects of fluorine substitution on the electrochemical performance of layered Li-excess nickel manganese oxides cathode materials for lithium-ion batteries. Electrochimica Acta, 2013. 113: p. 407-411.
192. Zhao, R.R., et al., Reversible Li and Na storage behaviors of perylenetetracarboxylates as organic anodes for Li- and Na-ion batteries. Journal of Electroanalytical Chemistry, 2013. 688: p. 93-97.
193. Wang, S., et al., Organic Li4C8H2O6 nanosheets for lithium-ion batteries. Nano letters, 2013. 13(9): p. 4404-4409.
194. Wu, X., et al., Nano-sized carboxylates as anode materials for rechargeable lithium-ion batteries. Journal of Energy Chemistry, 2014. 23(3): p. 269-273.
195. Liu, Y., et al., Self-improving anodes for lithium-ion batteries: continuous interlamellar spacing expansion induced capacity increase in polydopamine-derived nitrogen-doped carbon tubes during cycling. Journal of Materials Chemistry A, 2015. 3(42): p. 20880-20885.
196. Kanamura, K., H. Tamura, and Z.-i. Takehara, XPS analysis of a lithium surface immersed in propylene carbonate solution containing various salts. Journal of Electroanalytical Chemistry, 1992. 333(1-2): p. 127-142.
197. Nakamura, J., I. Toyoshima, and K.-i. Tanaka, Formation of carbidic and graphite carbon from CO on polycrystalline cobalt. Surface Science, 1988. 201(1): p. 185-194.
198. Shchukarev, A. and D. Korolkov, XPS study of group IA carbonates. Open Chemistry, 2004. 2(2): p. 347-362.
199. Kelemen, S., et al., XPS and 15N NMR study of nitrogen forms in carbonaceous solids. Energy & fuels, 2002. 16(6): p. 1507-1515.
200. Nie, M., et al., Lithium ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy. The Journal of Physical Chemistry C, 2013. 117(3): p. 1257-1267.
201. Zhuang, G., Y. Chen, and P.N. Ross Jr, The reaction of lithium with carbon dioxide studied by photoelectron spectroscopy. Surface science, 1998. 418(1): p. 139-149.
202. Wang, H.-g., et al., Multi-ring aromatic carbonyl compounds enabling high capacity and stable performance of sodium-organic batteries. Energy & Environmental Science, 2015. 8(11): p. 3160-3165.
203. Hong, J., et al., Biologically inspired pteridine redox centres for rechargeable batteries. Nature communications, 2014. 5: p. 5335.
204. An, S.J., et al., The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon, 2016. 105: p. 52-76.
205. Parimalam, B.S., et al., Decomposition reactions of anode solid electrolyte interphase (SEI) components with LiPF6. The Journal of Physical Chemistry C, 2017. 121(41): p. 22733-22738.
206. Oh, T., C.K. Choi, and K.-M. Lee, Investigation of aC: F films as hydrogenated diamond-like carbon and low-k materials. Thin Solid Films, 2005. 475(1-2): p. 109-112.
207. Krishnamoorthy, K., et al., The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon, 2013. 53: p. 38-49.
208. Wu, Z.S., et al., A LiF Nanoparticle‐Modified Graphene Electrode for High‐Power and High‐Energy Lithium Ion Batteries. Advanced Functional Materials, 2012. 22(15): p. 3290-3297.
209. Stojilovic, N., Using Cu K α1/K α2 splitting and a powder XRD system to discuss X-ray generation. Journal of Chemical Education, 2018. 95(4): p. 598-600.

無法下載圖示 全文公開日期 2025/08/12 (校內網路)
全文公開日期 2025/08/12 (校外網路)
全文公開日期 2025/08/12 (國家圖書館:臺灣博碩士論文系統)
QR CODE