簡易檢索 / 詳目顯示

研究生: 林正涵
Jen-Han Lin
論文名稱: 基於物聯網之鋰離子電池監測系統
IoT-Based Lithium-ion Battery Monitoring System with Model Optimization
指導教授: 劉益華
Yi-Hua Liu
郭重顯
Chung-Hsien Kuo
口試委員: 鄧人豪
Jen-Hao Teng
王順忠
Shun-Chung Wang
羅一峰
Yi-Feng Luo
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 112
中文關鍵詞: 物聯網電化學頻譜圖擬合頻域電池模型參數辨識啟發式演算法
外文關鍵詞: IoT, electrochemical spectrogram fitting, frequency domain battery model parameter identificaation, heuristic algorithm
相關次數: 點閱:245下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著環保議題受到關注,電動車成為了全球各國積極發展的方向。其中,鋰離子電池是電動車重要的核心零件之一,具有高能量密度、長壽命、充電時間短等優勢,被廣泛應用於電動車領域。因此,電池管理系統的發展就變得至關重要,如何精準地估測出電池殘餘容量與電池健康狀況將直接影響鋰離子電池在電動車載系統上的性能。另一方面,因應近日物聯網為人類社會帶來的便利性以及即時監測的重要性,本文將提出一款具有物聯網功能之電池狀態監測系統,利用ESP32 微控器藉由其I2C傳輸協議與電池管理系統進行資料傳輸,再由Wi-Fi模組與由C# 撰寫之Windows Forms程式透過MQTT傳輸協議同步資料,實現具物聯網功能之電池實時監測系統。
    在電池殘餘容量與電池健康狀況的估測中,鋰離子電池模型的準確率是非常重要的,本文針對近期發表與實務中常用之鋰離子電池模型共六種,建立其阻抗頻率響應轉移函數並與實際鋰離子電池阻抗的電化學頻譜圖進行比較。本文以均方根誤差當作其擬合程度的標的,先以粒子群演算法找出與實測電池阻抗擬合度最高的電池模型,再透過其他十二種元啟發式演算法測試,找出最適合進行鋰離子電池模型參數辨識的演算法。本實驗在粒子群演算法粒子數1000顆、迭代次數500次的條件下,得到最佳的鋰離子電池模型為Randle模型。接著以100個代理解,迭代次數上限為100次之條件執行20次,測試其他12種不同的演算法,得到最穩定的三種演算法分別為人工蜂群演算法、布穀鳥演算法以及鬼蝠魟演算法,並使用弗里德曼檢排名中判定人工蜂群演算法為最佳的等效模型參數辨識方法。


    In recent years, with the increasing focus on environmental issues, electric vehicles (EVs) have become a key direction for global development. Among them, lithium-ion batteries are crucial components of EVs, offering advantages such as high energy density, long lifespan, and short charging time. As a result, the development of battery management systems (BMS) has become crucial. The accurate estimation of state of charge (SOC) and state of health (SOH) directly impacts the performance of lithium-ion batteries in EV systems. On the other hand, in response to the convenience and importance of real-time monitoring brought by the Internet of Things (IoT), this thesis proposes a battery state monitoring system with IoT capabilities. The ESP32 microcontroller is used for data transmission via the I2C protocol with the BMS, while the Wi-Fi module and a Windows Forms program written in C# utilize the MQTT protocol for synchronized data transmission, achieving a real-time battery monitoring system with IoT functionality.
    In the estimation of SOC and SOH, the accuracy of the lithium-ion battery model is crucial. This thesis focuses on six commonly used lithium-ion battery models published recently and in practical applications. Transfer functions of impedance frequency response are established for these models and compared with the electrochemical impedance spectroscopy of actual lithium-ion batteries. The root-mean-square error (RMSE) is used as the criterion for fitting accuracy. The particle swarm optimization (PSO) algorithm is employed to find the battery model with the highest fitting accuracy to the measured battery impedance. Subsequently, twelve other metaheuristic algorithms are tested to identify the most suitable algorithm for lithium-ion battery model parameter identification. In the experiment, under the conditions of 1000 particles and 500 iterations, the Randle model is found to be the best lithium-ion battery model using PSO. Furthermore, by executing 20 runs with 100 particles and a maximum of 100 iterations, the three most stable algorithms are identified as artificial bee colony (ABC), cuckoo search (CS), and manta ray foraging optimization (MRFO). The Friedman test ranks the ABC algorithm as the best equivalent model parameter identification method.

    摘要 ii Abstract iii 誌謝 v 目錄 vii 表目錄 x 圖目錄 xi 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.4 論文大綱 4 第二章 物聯網電池監測系統 6 2.1 系統架構 6 2.2 電池管理系統 6 2.2.1 硬體與功能介紹 6 2.2.1.1 BQ76940 電池監控AFE簡介 8 2.2.1.2 BQ78350 Gas Gauge簡介 8 2.2.2 bqStudio功能驗證 9 2.3 物聯網系統 10 2.3.1 物聯網硬體說明 10 2.3.2 GUI軟體介紹 12 2.4 時域EIS快速量測技術 14 第三章 鋰離子電池等效模型 17 3.1 電化學阻抗頻譜 17 3.2 等效元件之頻率響應 18 3.2.1 基本等效元件 18 3.2.2 複合等效元件分析 21 3.3 頻域等效電池模型分析 26 3.3.1 戴維寧等效電路模型 26 3.3.2 PNGV模型(Partnership For a New Generation of Vehicles) 26 3.3.3 Randle模型 27 3.3.4 R(RQ)W模型 28 3.3.5 R(RQ)(RQ) 模型 29 第四章 最佳化方法 30 4.1 目標函數與參數限制 30 4.2 粒子群演算法 31 4.3 基因演算法 33 4.4 人工蜂群演算法 36 4.5 蝙蝠演算法 40 4.6 黑寡婦優化演算法 43 4.7 郊狼演算法 45 4.8 布穀鳥演算法 49 4.9 灰狼演算法 52 4.10 哈里斯鷹演算法 56 4.11 水母演算法 61 4.12 鬼蝠魟演算法 64 4.13 鯨魚演算法 68 第五章 實驗結果與分析 72 5.1 物聯網功能驗證 72 5.2 EIS與鋰離子電池等效模型最佳化模擬結果 75 5.2.1 以PSO搜尋六種電池等效模型 75 5.2.2 以十二種啟發式演算法搜尋Randle模型參數 81 5.2.3 限制條件最佳化搜尋 84 5.2.4 弗里德曼檢驗 86 第六章 結論與未來展望 88 6.1 結論 88 6.2 未來展望 89 參考文獻 91 附錄 96

    [1] Li Wang and K. -H. Liu, "Implementation of a Web-Based Real-Time Monitoring and Control System for a Hybrid Wind-PV-Battery Renewable Energy System," 2007 International Conference on Intelligent Systems Applications to Power Systems, Kaohsiung, Taiwan, 2007, pp. 1-6, doi: 10.1109/ISAP.2007.4441615.
    [2] S. Rathod and M. S. Aspalli, "PV Sourced Battery Management System with IoT Based Real Time Monitoring System for Electric Vehicle," 2022 IEEE 2nd International Conference on Mobile Networks and Wireless Communications (ICMNWC), Tumkur, Karnataka, India, 2022, pp. 1-6, doi: 10.1109/ICMNWC56175.2022.10031973.
    [3] Koko Friansa, Irsyad Nashirul Haq, Bening Maria Santi, Deddy Kurniadi, Edi Leksono, Brian Yuliarto, Development of Battery Monitoring System in Smart Microgrid Based on Internet of Things (IoT), Procedia Engineering, Volume 170, 2017, Pages 482-487, ISSN 1877-7058
    [4] S. Chanthakit and C. Rattanapoka, "MQTT Based Air Quality Monitoring System using Node MCU and Node-RED," 2018 Seventh ICT International Student Project Conference (ICT-ISPC), Nakhonpathom, Thailand, 2018, pp. 1-5, doi: 10.1109/ICT-ISPC.2018.8523891.
    [5] A. S. Salunkhe, Y. K. Kanse and S. S. Patil, "Internet of Things based Smart Energy Meter with ESP 32 Real Time Data Monitoring," 2022 International Conference on Electronics and Renewable Systems (ICEARS), Tuticorin, India, 2022, pp. 446-451, doi: 10.1109/ICEARS53579.2022.9752144.
    [6] Babalola, T. E., A. D. Babalola, and M. S. Olokun. 2022. “Development of an ESP-32 Microcontroller Based Weather Reporting Device”. Journal of Engineering Research and Reports 22 (11):27-38.
    [7] Languang Lu, Xuebing Han, Jianqiu Li, Jianfeng Hua, Minggao Ouyang, A review on the key issues for lithium-ion battery management in electric vehicles, Journal of Power Sources, Volume 226, 2013, Pages 272-288
    [8] M.A. Hannan, M.S.H. Lipu, A. Hussain, A. Mohamed, A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations, Renewable and Sustainable Energy Reviews, Volume 78, 2017, Pages 834-854.
    [9] He, Hongwen, Rui Xiong, and Jinxin Fan. 2011. "Evaluation of Lithium-Ion Battery Equivalent Circuit Models for State of Charge Estimation by an Experimental Approach" Energies 4, no. 4: 582-598.
    [10] Xiaosong Hu, Shengbo Li, Huei Peng, A comparative study of equivalent circuit models for Li-ion batteries, Journal of Power Sources, Volume 198, 2012, Pages 359-367.
    [11] Bryan Hirschorn, Mark E. Orazem, Bernard Tribollet, Vincent Vivier, Isabelle Frateur, Marco Musiani, Determination of effective capacitance and film thickness from constant-phase-element parameters, Electrochimica Acta, Volume 55, Issue 21, 2010, Pages 6218-6227.
    [12] Xia, Bizhong, Zhen Sun, Ruifeng Zhang, and Zizhou Lao. 2017. "A Cubature Particle Filter Algorithm to Estimate the State of the Charge of Lithium-Ion Batteries Based on a Second-Order Equivalent Circuit Model" Energies 10, no. 4: 457.
    [13] Gregory L. Plett, Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation, Journal of Power Sources, Volume 134, Issue 2, 2004, Pages 277-292.
    [14] Wei He, Nicholas Williard, Chaochao Chen, Michael Pecht, State of charge estimation for electric vehicle batteries using unscented Kalman filtering, Microelectronics Reliability, Volume 53, Issue 6, 2013, Pages 840-847.
    [15] H. Wang, G. Li, Z. Yu and X. Wang, "Study on Genetic Algorithm in Estimating the Initial Value of EIS Equivalent Circuit," 2009 WRI World Congress on Software Engineering, Xiamen, China, 2009, pp. 507-510, doi: 10.1109/WCSE.2009.306.
    [16] J. Jiang, L. Xu, C. Song and H. Bao, "An Improved ABC Algorithm and Its Application on Parameter Identification of Solar Cell Model," 2022 15th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 2022, pp. 236-240.
    [17] Kang, Tong, Jiangang Yao, Min Jin, Shengjie Yang, and ThanhLong Duong. 2018. "A Novel Improved Cuckoo Search Algorithm for Parameter Estimation of Photovoltaic (PV) Models" Energies 11, no. 5: 1060.
    [18] A. Heidari et al. Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems (2019).
    [19] V. Hayyolalam and A. Kazem. Black Widow Optimization Algorithm: A novel meta-heuristic approach for solving engineering optimization problems. Engineering Applications of Artificial Intelligence (2020).
    [20] J.-S. Chou and D.-N. Truong. A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean. Applied Mathematics and Computation (2020).
    [21] W. Zhao, Z. Zhang and L. Wang. Manta Ray Foraging Optimization: An effective bio-inspired optimizer for engineering applications. Engineering Applications of Artificial Intelligence (2020).
    [22] J. Kennedy, R. C. Eberhart and Y. Shi. Swarm intelligence. Artificial Intelligence (2001)
    [23] M. Mitchell. An introduction to genetic algorithms. MIT Press (1998).
    [24] D. Karaboga and B. Basturk. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. Journal of Global Optimization (2007).
    [25] X.-S. Yang. A new metaheuristic bat-inspired algorithm. Nature inspired cooperative strategies for optimization (2010).
    [26] J. Pierezan and L. Coelho. Coyote Optimization Algorithm: A New Metaheuristic for Global Optimization Problems. IEEE Congress on Evolutionary Computation (CEC) (2018).
    [27] X.-S. Yang and D. Suash. Cuckoo search via Lévy flights. World Congress on Nature & Biologically Inspired Computing (2009).
    [28] [9] S. Mirjalili, S. Mirjalili and A. Lewis. Grey Wolf Optimizer. Advances in Engineering Software (2014).
    [29] S. Mirjalli and A. Lewis. The Whale Optimization Algorithm. Advances in Engineering Software (2016).
    [30] Choi, Woosung, et al. "Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries." Journal of Electrochemical Science and Technology 11.1 (2020): 1-13.
    [31] Jun Huang, Zhe Li, Bor Yann Liaw, Jianbo Zhang,Graphical analysis of electrochemical impedance spectroscopy data in Bode and Nyquist representations, Journal of Power Sources,Volume 309,2016,Pages 82-98,ISSN 0378-7753

    QR CODE