簡易檢索 / 詳目顯示

研究生: 陳韋佑
Wei-You Chen
論文名稱: 基於簡化分子線性輸入規範之高通量虛擬篩選與機器學習:設計新穎鋰電池電解質添加劑
Efficient Method for High-Throughput Virtual Screening and Machine Learning Based on SMILES: Design of New Additives for Lithium-Ion Batteries
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 黃炳照
Bing-Joe Hwang
蔡明剛
Ming-Kang Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 104
中文關鍵詞: 高通量虛擬篩選機器學習鋰電池電解質添加劑
外文關鍵詞: High-Throughput Virtual Screening
相關次數: 點閱:153下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著計算機科學與理論計算方法的蓬勃發展,高通量計算方法以及機器學習在新穎物質的探索上變成越來越重要的工具,尤其是結合第一原理計算,這兩種工具在開發新電池材料、熱電、壓電物質和有機光電材料等領域都具有卓越的貢獻。在本研究中,我們使用高通量虛擬篩選方法和機器學習技術來設計新穎的鋰電池電解質添加劑,並著重在其擁有比環硫乙烷更佳的電化學性質。簡化分子線性輸入規範被使用為結構表示式,以環硫乙烷為核心結構,結合氟、氯、烷基衍伸物,生成高達 3,649,051種不同的化學結構的資料庫。並使用半經驗方法PM6來計算其最高占據分子軌域(HOMO)、最低未占分子軌域(LUMO)、電子親和力(EA)、偶極矩(μ)和化學硬度(η)等性質。在高通量虛擬篩選方法中 我們根據兩個重要的電化學性質 1.較低的最低未占分子軌域(LUMO) 2.較低的能帶隙(HOMO-LUMO gap),從7260個物質中篩選出6種新穎的添加劑。在機器學習的方法中,我們使用4種模型,包括隨機森林 (Random forests)、決策樹 (Decision Trees)、極端隨機樹 (extra trees)、 極限梯度提升 (XGBoost)來預測電化學性質,並成功的從 3,649,051個結構中篩選出26種優於環硫乙烷的新穎材料。最後,我們將囊括高通量虛擬篩選方法和機器學習技術所篩選出來的32種材料以更高階的DFT計算進行驗證。基於這些理論計算結果,我們預期所篩選出的32種材料將成為下一代鋰電池的潛力添加劑。


    The rapid advances in the computer technologies and theoretical methodologies have made high- throughput screening (HTS) method and Machine learning (ML) as a powerful tool in the process of materials discovery. Especially, these methods combined with first-principles calculations have demonstrated an effective track record of guiding advances in a variety of fields including design of new battery materials, thermoelectric materials, piezoelectric materials, and organic photovoltaic materials. In this study, we used both HTS and ML methods to screen the efficient electrolyte additive materials for the lithium-ion battery by mainly focusing the better electrochemical properties than the ethylene sulfite (ES). Here, we used simplified molecular-input line-entry system (SMILES) as a chemical nomenclature to construct a virtual library consisting of up to 3,649,051 different stereotype chemical structures, which are automatically generated based on fluoro-, chloro- and alkyl-derivatives of ES. The selected descriptors such as HOMO, LUMO, electron affinity (EA), the dipole moment (μ) and chemical hardness (η) have been calculated for the molecular structures in the virtual library using semiempirical PM6 method. In HTS, we screened by focusing on two significant properties of electrolyte additives:1) lower LUMO level; 2) smaller HOMO-LUMO gap relative to the core ES system. We identified 6 new materials as promising additives among the 7260 structures based on their better target properties than ES. In ML part, we used four different models including Random forests, Decision Trees, extra trees and extreme gradient boosting (XGBoost) to map the material descriptors to our target property and XGBoost demonstrates a capability for accurately predicting the target properties. Out of 3,649,051 structures in the ML database, we screened 26 additive structures which exhibit better target properties compared to the ES. In addition, all the screened candidates from both HTS and ML methods are further analyzed by high level DFT calculations, and our results indicate that screened total of 32 structures will be the promising electrolyte additive materials for the use of next generation Li ion battery.

    ABSTRACT II 摘要 IV 致謝 V CONTENTS VII INDEX OF FIGURES IX INDEX OF TABLES X Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Lithium-ion Battery 3 1.3 Lithium-ion Battery Material 5 1.3.1 Cathode 5 1.3.2 Anode 7 1.3.3 Electrolytes 8 1.3.3.1 Solvent 9 1.3.3.2 Salt 10 1.3.3.3 Additives 13 1.4 Solid Electrolyte Interface 15 1.4.1 Anode-Electrolyte Interface: SEI 16 1.4.2 Cathode-Electrolyte Interface 20 1.3 High Throughput Screening (HTS) 23 1.4 Machine Learning (ML) 28 1.5 Present Study 33 Chapter 2 Virtual Library 34 2.1 Methods 34 2.2 Results and discussion 36 2.3 Conclusion 39 Chapter 3 High Throughput Screening (HTS) 40 3.1 Methods and Computational Details 40 3.2 Results and Discussion 43 3.2.1 The static data of properties 43 3.2.2 Screening of Lead Structures: Pareto-optimal 45 3.2.3 Validation of Lead Structures by DFT 49 3.3 Conclusion 52 Chapter 4 Machine Learning 53 4.1 Methods and Computational Details 53 4.1.1 Random Forest (RF) 55 4.1.2 Decision Trees (DTs) 56 4.1.3 Extremely Randomized Trees (Extra-Trees) 57 4.1.4 Extreme gradient boosting (XGBoost) 57 4.2 Results and Discussion 58 4.2.1 Choice of ML models 58 4.2.2 Validation of ML model 60 4.2.3 Screening of Lead Structures: Pareto-optimal 62 4.2.4 Validation of Lead Structures by DFT 63 4.2.5 Comparison of HTS and ML methods 70 4.3 Conclusion 73 Chapter 5 Summary 75 References 77 Appendix 89

    1. Li, M.; Lu, J.; Chen, Z.; Amine, K., 30 Years of Lithium‐Ion Batteries. Advanced Materials 2018, 30, 1800561.
    2. Choi, J. W.; Aurbach, D., Promise and Reality of Post-Lithium-Ion Batteries with High Energy Densities. Nature Reviews Materials 2016, 1, 16013.
    3. Armand, M.; Tarascon, J.-M., Building Better Batteries. nature 2008, 451, 652.
    4. Nishi, Y., Lithium Ion Secondary Batteries; Past 10 Years and the Future. Journal of Power Sources 2001, 100, 101-106.
    5. Nishi, Y., The Development of Lithium Ion Secondary Batteries. The Chemical Record 2001, 1, 406-413.
    6. Scrosati, B.; Hassoun, J.; Sun, Y.-K., Lithium-Ion Batteries. A Look into the Future. Energy & Environmental Science 2011, 4, 3287-3295.
    7. Haregewoin, A. M.; Wotango, A. S.; Hwang, B.-J., Electrolyte Additives for Lithium Ion Battery Electrodes: Progress and Perspectives. Energy & Environmental Science 2016, 9, 1955-1988.
    8. Arya, A.; Sharma, A., Electrolyte for Energy Storage/Conversion (Li+, Na+, Mg 2+) Devices Based on Pvc and Their Associated Polymer: A Comprehensive Review. Journal of Solid State Electrochemistry 2019, 23, 997-1059.
    9. Xu, K., Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chemical reviews 2004, 104, 4303-4418.
    10. Shen, X.; Liu, H.; Cheng, X.-B.; Yan, C.; Huang, J.-Q., Beyond Lithium Ion Batteries: Higher Energy Density Battery Systems Based on Lithium Metal Anodes. Energy Storage Materials 2018, 12, 161-175.
    11. Xu, K., Electrolytes and Interphases in Li-Ion Batteries and Beyond. Chemical reviews 2014, 114, 11503-11618.
    12. Zhang, S. S., A Review on Electrolyte Additives for Lithium-Ion Batteries. Journal of Power Sources 2006, 162, 1379-1394.
    13. Aurbach, D.; Gamolsky, K.; Markovsky, B.; Gofer, Y.; Schmidt, M.; Heider, U., On the Use of Vinylene Carbonate (Vc) as an Additive to Electrolyte Solutions for Li-Ion Batteries. Electrochimica Acta 2002, 47, 1423-1439.
    14. Xia, J.; Ma, L.; Aiken, C.; Nelson, K.; Chen, L.; Dahn, J., Comparative Study on Prop-1-Ene-1, 3-Sultone and Vinylene Carbonate as Electrolyte Additives for Li (Ni1/3mn13co1/3) O2/Graphite Pouch Cells. Journal of The Electrochemical Society 2014, 161, A1634-A1641.
    15. Hu, Y.; Kong, W.; Li, H.; Huang, X.; Chen, L., Experimental and Theoretical Studies on Reduction Mechanism of Vinyl Ethylene Carbonate on Graphite Anode for Lithium Ion Batteries. Electrochemistry communications 2004, 6, 126-131.
    16. Li, J.; Yao, W.; Meng, Y. S.; Yang, Y., Effects of Vinyl Ethylene Carbonate Additive on Elevated-Temperature Performance of Cathode Material in Lithium Ion Batteries. The Journal of Physical Chemistry C 2008, 112, 12550-12556.
    17. Etacheri, V.; Haik, O.; Goffer, Y.; Roberts, G. A.; Stefan, I. C.; Fasching, R.; Aurbach, D., Effect of Fluoroethylene Carbonate (Fec) on the Performance and Surface Chemistry of Si-Nanowire Li-Ion Battery Anodes. Langmuir 2011, 28, 965-976.
    18. Ma, L.; Xia, J.; Xia, X.; Dahn, J., The Impact of Vinylene Carbonate, Fluoroethylene Carbonate and Vinyl Ethylene Carbonate Electrolyte Additives on Electrode/Electrolyte Reactivity Studied Using Accelerating Rate Calorimetry. Journal of The Electrochemical Society 2014, 161, A1495-A1498.
    19. Li, B.; Xu, M.; Li, T.; Li, W.; Hu, S., Prop-1-Ene-1, 3-Sultone as Sei Formation Additive in Propylene Carbonate-Based Electrolyte for Lithium Ion Batteries. Electrochemistry Communications 2012, 17, 92-95.
    20. Nelson, K.; Xia, J.; Dahn, J., Studies of the Effect of Varying Prop-1-Ene-1, 3-Sultone Content in Lithium Ion Pouch Cells. Journal of The Electrochemical Society 2014, 161, A1884-A1889.
    21. Jain, A.; Shin, Y.; Persson, K. A., Computational Predictions of Energy Materials Using Density Functional Theory. Nature Reviews Materials 2016, 1, 15004.
    22. Hautier, G.; Jain, A.; Ong, S. P.; Kang, B.; Moore, C.; Doe, R.; Ceder, G., Phosphates as Lithium-Ion Battery Cathodes: An Evaluation Based on High-Throughput Ab Initio Calculations. Chemistry of Materials 2011, 23, 3495-3508.
    23. Jain, A.; Hautier, G.; Moore, C.; Kang, B.; Lee, J.; Chen, H.; Twu, N.; Ceder, G., A Computational Investigation of Li9m3 (P2o7) 3 (Po4) 2 (M= V, Mo) as Cathodes for Li Ion Batteries. Journal of The Electrochemical Society 2012, 159, A622-A633.
    24. Kauwe, S. K.; Rhone, T. D.; Sparks, T. D., Data-Driven Studies of Li-Ion-Battery Materials. Crystals 2019, 9, 54.
    25. Sendek, A. D.; Cubuk, E. D.; Antoniuk, E. R.; Cheon, G.; Cui, Y.; Reed, E. J., Machine Learning-Assisted Discovery of Solid Li-Ion Conducting Materials. Chemistry of Materials 2018, 31, 342-352.
    26. Katcho, N. A.; Carrete, J.; Reynaud, M.; Rousse, G.; Casas-Cabanas, M.; Mingo, N.; Rodríguez-Carvajal, J.; Carrasco, J., An Investigation of the Structural Properties of Li and Na Fast Ion Conductors Using High-Throughput Bond-Valence Calculations and Machine Learning. Journal of Applied Crystallography 2019, 52, 148-157.
    27. Chen, H.; Hautier, G.; Jain, A.; Moore, C.; Kang, B.; Doe, R.; Wu, L.; Zhu, Y.; Tang, Y.; Ceder, G., Carbonophosphates: A New Family of Cathode Materials for Li-Ion Batteries Identified Computationally. Chemistry of Materials 2012, 24, 2009-2016.
    28. Wang, S.; Wang, Z.; Setyawan, W.; Mingo, N.; Curtarolo, S., Assessing the Thermoelectric Properties of Sintered Compounds Via High-Throughput Ab-Initio Calculations. Physical Review X 2011, 1, 021012.
    29. Madsen, G. K., Automated Search for New Thermoelectric Materials: The Case of Liznsb. Journal of the American Chemical Society 2006, 128, 12140-12146.
    30. Gaultois, M. W.; Oliynyk, A. O.; Mar, A.; Sparks, T. D.; Mulholland, G. J.; Meredig, B., Perspective: Web-Based Machine Learning Models for Real-Time Screening of Thermoelectric Materials Properties. APL Materials 2016, 4, 053213.
    31. Sparks, T. D.; Gaultois, M. W.; Oliynyk, A.; Brgoch, J.; Meredig, B., Data Mining Our Way to the Next Generation of Thermoelectrics. Scripta Materialia 2016, 111, 10-15.
    32. Greeley, J.; Nørskov, J. K.; Mavrikakis, M., Electronic Structure and Catalysis on Metal Surfaces. Annual review of physical chemistry 2002, 53, 319-348.
    33. Whittingham, M. S., Lithium Batteries and Cathode Materials. Chemical reviews 2004, 104, 4271-4302.
    34. Mizushima, K.; Jones, P.; Wiseman, P.; Goodenough, J. B., Lixcoo2 (0< X<-1): A New Cathode Material for Batteries of High Energy Density. Materials Research Bulletin 1980, 15, 783-789.
    35. J.R. Dahn; U. von Sacken; M.W. Juzkow; Al‐Janaby, H., Rechargeable Linio2/Carbon Cells Journal of The Electrochemical Society 1991, 138 2207-2211.
    36. Yazami, R.; Touzain, P., A Reversible Graphite-Lithium Negative Electrode for Electrochemical Generators. Journal of Power Sources 1983, 9, 365-371.
    37. Sekai, K.; Azuma, H.; Omaru, A.; Fujita, S.; Imoto, H.; Endo, T.; Yamaura, K.; Nishi, Y.; Mashiko, S.; Yokogawa, M., Lithium-Ion Rechargeable Cells with Licoo2 and Carbon Electrodes. Journal of power sources 1993, 43, 241-244.
    38. Pistoia, G., Lithium Batteries: New Materials, Developments and Perspectives; Elsevier Amsterdam, 1994; Vol. 5.
    39. Dai, B.-Q.; Zhang, G.-L., A Dft Study of Hbn Compared with Graphite in Forming Alkali Metal Intercalation Compounds. Materials chemistry and physics 2003, 78, 304-307.
    40. Noel, M.; Santhanam, R., Electrochemistry of Graphite Intercalation Compounds. Journal of Power Sources 1998, 72, 53-65.
    41. Mizutani, Y.; Ihara, E.; Abe, T.; Asano, M.; Harada, T.; Ogumi, Z.; Inaba, M., Preparation of Alkali Metal Graphite Intercalation Compounds in Organic Solvents. Journal of Physics and Chemistry of Solids 1996, 57, 799-803.
    42. Maksimova, N.; Sorokina, N.; Shornikova, O.; Avdeev, V., Thermal Properties of Graphite Intercalation Compounds with Acids. Journal of Physics and Chemistry of Solids 2004, 65, 177-180.
    43. Chuan, X.; Chen, D.; Zhou, X., Electrical Properties of Expanded Graphite Intercalation Compounds. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 2001, 17, 371-374.
    44. Maluangnont, T.; Lerner, M. M.; Gotoh, K., Synthesis of Ternary and Quaternary Graphite Intercalation Compounds Containing Alkali Metal Cations and Diamines. Inorganic chemistry 2011, 50, 11676-11682.
    45. Kang, F.; Inagaki, M.; Toyoda, M., Exfoliation of Graphite Via Intercalation Compounds. Chemistry And Physics Of Carbon. Series: Chemistry and Physics of Carbon, ISBN: 978-0-8247-4088-7. CRC Press, Edited by Ljubisa Radovic, vol. 29, pp. 1-69 2004, 29, 1-69.
    46. Savoskin, M. V.; Yaroshenko, A. P.; Whyman, G.; Mestechkin, M. M.; Mysyk, R. D.; Mochalin, V., Theoretical Study of Stability of Graphite Intercalation Compounds with Brønsted Acids. Carbon 2003, 41, 2757-2760.
    47. Maluangnont, T.; Sirisaksoontorn, W.; Lerner, M. M., A Comparative Structural Study of Ternary Graphite Intercalation Compounds Containing Alkali Metals and Linear or Branched Amines. Carbon 2012, 50, 597-602.
    48. Dunaev, A.; Arkhangelsky, I.; Zubavichus, Y. V.; Avdeev, V., Preparation, Structure and Reduction of Graphite Intercalation Compounds with Hexachloroplatinic Acid. Carbon 2008, 46, 788-795.
    49. Dimiev, A. M.; Ceriotti, G.; Behabtu, N.; Zakhidov, D.; Pasquali, M.; Saito, R.; Tour, J. M., Direct Real-Time Monitoring of Stage Transitions in Graphite Intercalation Compounds. ACS nano 2013, 7, 2773-2780.
    50. Özmen-Monkul, B.; Lerner, M. M., The First Graphite Intercalation Compounds Containing Tris (Pentafluoroethyl) Trifluorophosphate. Carbon 2010, 48, 3205-3210.
    51. Isaev, Y. V.; Lenenko, N.; Gumileva, L.; Buyanovskaya, A.; Novikov, Y. N.; Stumpp, E., A Novel Type of Reaction in the Chemistry of Graphite Intercalation Compounds. The Preparation of Alkali Metal Graphite Intercalation Compounds by Ion Exchange Reactions. Carbon 1997, 35, 563-566.
    52. Datta, M. K.; Kumta, P. N., In Situ Electrochemical Synthesis of Lithiated Silicon–Carbon Based Composites Anode Materials for Lithium Ion Batteries. Journal of Power Sources 2009, 194, 1043-1052.
    53. Yamaki, J.-i.; Baba, Y.; Katayama, N.; Takatsuji, H.; Egashira, M.; Okada, S., Thermal Stability of Electrolytes with Lixcoo2 Cathode or Lithiated Carbon Anode. Journal of power sources 2003, 119, 789-793.
    54. Takada, K., Secondary Batteries− Lithium Rechargable Systems− Lithium-Ion Electrolytes: Solid Oxide. Elsevier: 2009; pp 328-336.
    55. Besenhard, J.; Winter, M.; Yang, J.; Biberacher, W., Filming Mechanism of Lithium-Carbon Anodes in Organic and Inorganic Electrolytes. Journal of Power Sources 1995, 54, 228-231.
    56. Wagner, M. R.; Albering, J.; Moeller, K.-C.; Besenhard, J.; Winter, M., Xrd Evidence for the Electrochemical Formation of Li+ (Pc) Ycn-in Pc-Based Electrolytes. Electrochemistry communications 2005, 7, 947-952.
    57. Chung, G. C.; Kim, H. J.; Yu, S. I.; Jun, S. H.; Choi, J. w.; Kim, M. H., Origin of Graphite Exfoliation an Investigation of the Important Role of Solvent Cointercalation. Journal of The Electrochemical Society 2000, 147, 4391-4398.
    58. Selim, R.; Bro, P., Some Observations on Rechargeable Lithium Electrodes in a Propylene Carbonate Electrolyte. Journal of The Electrochemical Society 1974, 121, 1457-1459.
    59. Xu, K.; Ding, M. S.; Jow, T. R., Quaternary Onium Salts as Nonaqueous Electrolytes for Electrochemical Capacitors. Journal of the electrochemical Society 2001, 148, A267-A274.
    60. Ue, M.; Mori, S., Mobility and Ionic Association of Lithium Salts in a Propylene Carbonate‐Ethyl Methyl Carbonate Mixed Solvent. Journal of the Electrochemical Society 1995, 142, 2577-2581.
    61. Ding, M. S.; Jow, T. R., How Conductivities and Viscosities of Pc-Dec and Pc-Ec Solutions of Libf4, Lipf6, Libob, Et4 Nbf 4, and Et4 Npf 6 Differ and Why. Journal of The Electrochemical Society 2004, 151, A2007-A2015.
    62. Tobishima, S.-i.; Yamaji, A., Electrolytic Characteristics of Mixed Solvent Electrolytes for Lithium Secondary Batteries. Electrochimica Acta 1983, 28, 1067-1072.
    63. Nanjundiah, C.; Goldman, J.; Dominey, L.; Koch, V., Electrochemical Stability of Limf6 (M= P, as, Sb) in Tetrahydrofuran and Sulfolane. Journal of the Electrochemical Society 1988, 135, 2914-2917.
    64. Newman, G.; Francis, R.; Gaines, L.; Rao, B., Hazard Investigations of Liclo4/Dioxolane Electrolyte. Journal of The Electrochemical Society 1980, 127, 2025-2027.
    65. Jasinski, R.; Carroll, S., Thermal Stability of a Propylene Carbonate Electrolyte. Journal of The Electrochemical Society 1970, 117, 218-219.
    66. Couture, L.; Desnoyers, J. E.; Perron, G., Some Thermodynamic and Transport Properties of Lithium Salts in Mixed Aprotic Solvents and the Effect of Water on Such Properties. Canadian journal of chemistry 1996, 74, 153-164.
    67. Naji, A.; Ghanbaja, J.; Humbert, B.; Willmann, P.; Billaud, D., Electroreduction of Graphite in Liclo4-Ethylene Carbonate Electrolyte. Characterization of the Passivating Layer by Transmission Electron Microscopy and Fourier-Transform Infrared Spectroscopy. Journal of power sources 1996, 63, 33-39.
    68. Yoshimatsu, I.; Hirai, T.; Yamaki, J. i., Lithium Electrode Morphology During Cycling in Lithium Cells. Journal of the Electrochemical Society 1988, 135, 2422-2427.
    69. Desjardins, C.; Cadger, T.; Salter, R.; Donaldson, G.; Casey, E., Lithium Cycling Performance in Improved Lithium Hexafluoroarsenate/2‐Methyl Tetrahydrofuran Electrolytes. Journal of The Electrochemical Society 1985, 132, 529-533.
    70. Zhang, S.; Xu, K.; Jow, T., Low-Temperature Performance of Li-Ion Cells with a Libf 4-Based Electrolyte. Journal of Solid State Electrochemistry 2003, 7, 147-151.
    71. Zhang, S. S.; Xu, K.; Jow, T. R., Study of Libf4 as an Electrolyte Salt for a Li-Ion Battery. Journal of The Electrochemical Society 2002, 149, A586-A590.
    72. Takata, K. i.; Morita, M.; Matsuda, Y.; Matsui, K., Cycling Characteristics of Secondary Li Electrode in Libf4/Mixed Ether Electrolytes. Journal of The Electrochemical Society 1985, 132, 126-128.
    73. Han, H.-B.; Zhou, S.-S.; Zhang, D.-J.; Feng, S.-W.; Li, L.-F.; Liu, K.; Feng, W.-F.; Nie, J.; Li, H.; Huang, X.-J., Lithium Bis (Fluorosulfonyl) Imide (Lifsi) as Conducting Salt for Nonaqueous Liquid Electrolytes for Lithium-Ion Batteries: Physicochemical and Electrochemical Properties. Journal of Power Sources 2011, 196, 3623-3632.
    74. Zhou, H.; Liu, F.; Li, J., Preparation, Thermal Stability and Electrochemical Properties of Liodfb. Journal of Materials Science & Technology 2012, 28, 723-727.
    75. LIU, P.; LI, F.; LI, J.; LU, H.; ZHANG, Z.; LAI, Y., Liodfb-Teabf 4 Composite Electrolyte for Li-Ion Battery and Double-Layer Capacitor. ZHONGNAN DAXUE XUEBAO (ZIRAN KEXUE BAN) 2010, 41, 2079-2084.
    76. Korepp, C.; Kern, W.; Lanzer, E.; Raimann, P.; Besenhard, J.; Yang, M.; Möller, K.-C.; Shieh, D.-T.; Winter, M., 4-Bromobenzyl Isocyanate Versus Benzyl Isocyanate—New Film-Forming Electrolyte Additives and Overcharge Protection Additives for Lithium Ion Batteries. Journal of power sources 2007, 174, 637-642.
    77. Chen, R.; He, Z.; Wu, F., Lithium Organic Borate Salt and Sulfite Functional Electrolytes. Progress in Chemistry 2001, 23, 2-3.
    78. Tarascon, J.; Guyomard, D., New Electrolyte Compositions Stable over the 0 to 5 V Voltage Range and Compatible with the Li1+ Xmn2o4/Carbon Li-Ion Cells. Solid State Ionics 1994, 69, 293-305.
    79. Zhang, Q.; Qiu, C.; Fu, Y.; Ma, X., Xylene as a New Polymerizable Additive for Overcharge Protection of Lithium Ion Batteries. Chinese Journal of Chemistry 2009, 27, 1459-1463.
    80. Xiang, H.; Xu, H.; Wang, Z.; Chen, C., Dimethyl Methylphosphonate (Dmmp) as an Efficient Flame Retardant Additive for the Lithium-Ion Battery Electrolytes. Journal of Power Sources 2007, 173, 562-564.
    81. Hao, X.; Liu, P.; Zhang, Z.; Lai, Y.; Wang, X.; Li, J.; Liu, Y., Tetraethylammonium Tetrafluoroborate as Additive to Improve the Performance of Lifepo4/Artificial Graphite Cells. Electrochemical and Solid-State Letters 2010, 13, A118-A120.
    82. Edström, K.; Gustafsson, T.; Thomas, J. O., The Cathode–Electrolyte Interface in the Li-Ion Battery. Electrochimica Acta 2004, 50, 397-403.
    83. Nazri, G.; Muller, R. H., Composition of Surface Layers on Li Electrodes in Pc, Liclo4 of Very Low Water Content. Journal of The Electrochemical Society 1985, 132, 2050-2054.
    84. Peled, E.; Tow, D. B.; Merson, A.; Gladkich, A.; Burstein, L.; Golodnitsky, D., Composition, Depth Profiles and Lateral Distribution of Materials in the Sei Built on Hopg-Tof Sims and Xps Studies. Journal of power sources 2001, 97, 52-57.
    85. Kanamura, K.; Tamura, H.; Takehara, Z.-i., Xps Analysis of a Lithium Surface Immersed in Propylene Carbonate Solution Containing Various Salts. Journal of Electroanalytical Chemistry 1992, 333, 127-142.
    86. Kanamura, K.; Tamura, H.; Shiraishi, S.; Takehara, Z. i., Xps Analysis of Lithium Surfaces Following Immersion in Various Solvents Containing Libf4. Journal of the Electrochemical Society 1995, 142, 340-347.
    87. Dedryvère, R.; Martinez, H.; Leroy, S.; Lemordant, D.; Bonhomme, F.; Biensan, P.; Gonbeau, D., Surface Film Formation on Electrodes in a Licoo2/Graphite Cell: A Step by Step Xps Study. Journal of Power Sources 2007, 174, 462-468.
    88. Eriksson, T.; Andersson, A. M.; Bishop, A. G.; Gejke, C.; Gustafsson, T.; Thomas, J. O., Surface Analysis of Limn2 O 4 Electrodes in Carbonate-Based Electrolytes. Journal of The Electrochemical Society 2002, 149, A69-A78.
    89. Eriksson, T.; Andersson, A.; Gejke, C.; Gustafsson, T.; Thomas, J. O., Influence of Temperature on the Interface Chemistry of Li X Mn2o4 Electrodes. Langmuir 2002, 18, 3609-3619.
    90. Andersson, A.; Abraham, D.; Haasch, R.; MacLaren, S.; Liu, J.; Amine, K., Surface Characterization of Electrodes from High Power Lithium-Ion Batteries. Journal of The Electrochemical Society 2002, 149, A1358-A1369.
    91. Edström, K.; Herstedt, M.; Abraham, D. P., A New Look at the Solid Electrolyte Interphase on Graphite Anodes in Li-Ion Batteries. Journal of Power Sources 2006, 153, 380-384.
    92. Malmgren, S.; Ciosek, K.; Hahlin, M.; Gustafsson, T.; Gorgoi, M.; Rensmo, H.; Edström, K., Comparing Anode and Cathode Electrode/Electrolyte Interface Composition and Morphology Using Soft and Hard X-Ray Photoelectron Spectroscopy. Electrochimica Acta 2013, 97, 23-32.
    93. Aurbach, D.; Markovsky, B.; Shechter, A.; Ein‐Eli, Y.; Cohen, H., A Comparative Study of Synthetic Graphite and Li Electrodes in Electrolyte Solutions Based on Ethylene Carbonate‐Dimethyl Carbonate Mixtures. Journal of The Electrochemical Society 1996, 143, 3809-3820.
    94. Aurbach, D.; Gamolsky, K.; Markovsky, B.; Salitra, G.; Gofer, Y.; Heider, U.; Oesten, R.; Schmidt, M., The Study of Surface Phenomena Related to Electrochemical Lithium Intercalation into Li X Mo Y Host Materials (M= Ni, Mn). Journal of The Electrochemical Society 2000, 147, 1322-1331.
    95. Aurbach, D., Review of Selected Electrode–Solution Interactions Which Determine the Performance of Li and Li Ion Batteries. Journal of Power Sources 2000, 89, 206-218.
    96. Shi, F.; Ross, P. N.; Zhao, H.; Liu, G.; Somorjai, G. A.; Komvopoulos, K., A Catalytic Path for Electrolyte Reduction in Lithium-Ion Cells Revealed by in Situ Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy. Journal of the American Chemical Society 2015, 137, 3181-3184.
    97. Nazri, G.; Muller, R. H., In Situ X-Ray Diffraction of Surface Layers on Lithium in Nonaqueous Electrolyte. 1984.
    98. Domi, Y.; Ochida, M.; Tsubouchi, S.; Nakagawa, H.; Yamanaka, T.; Doi, T.; Abe, T.; Ogumi, Z., In Situ Afm Study of Surface Film Formation on the Edge Plane of Hopg for Lithium-Ion Batteries. The Journal of Physical Chemistry C 2011, 115, 25484-25489.
    99. Cresce, A. v.; Russell, S. M.; Baker, D. R.; Gaskell, K. J.; Xu, K., In Situ and Quantitative Characterization of Solid Electrolyte Interphases. Nano letters 2014, 14, 1405-1412.
    100. Jeong, S.-K.; Inaba, M.; Abe, T.; Ogumi, Z., Surface Film Formation on Graphite Negative Electrode in Lithium-Ion Batteries: Afm Study in an Ethylene Carbonate-Based Solution. Journal of The Electrochemical Society 2001, 148, A989-A993.
    101. Inaba, M.; Kawatate, Y.; Funabiki, A.; Jeong, S.-K.; Abe, T.; Ogumi, Z., Stm Study on Graphite/Electrolyte Interface in Lithium-Ion Batteries: Solid Electrolyte Interface Formation in Trifluoropropylene Carbonate Solution. Electrochimica acta 1999, 45, 99-105.
    102. Inaba, M.; Siroma, Z.; Kawatate, Y.; Funabiki, A.; Ogumi, Z., Electrochemical Scanning Tunneling Microscopy Analysis of the Surface Reactions on Graphite Basal Plane in Ethylene Carbonate-Based Solvents and Propylene Carbonate. Journal of Power Sources 1997, 68, 221-226.
    103. Inaba, M.; Siroma, Z.; Funabiki, A.; Ogumi, Z.; Abe, T.; Mizutani, Y.; Asano, M., Electrochemical Scanning Tunneling Microscopy Observation of Highly Oriented Pyrolytic Graphite Surface Reactions in an Ethylene Carbonate-Based Electrolyte Solution. Langmuir 1996, 12, 1535-1540.
    104. Peled, E., The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—the Solid Electrolyte Interphase Model. Journal of The Electrochemical Society 1979, 126, 2047-2051.
    105. Peled, E., Film Forming Reaction at the Lithium/Electrolyte Interface. Journal of Power Sources 1983, 9, 253-266.
    106. Gabano, J.-P., Lithium Batteries. Academic Press: London/New York 1983.
    107. Aurbach, D.; Daroux, M.; Faguy, P.; Yeager, E., Identification of Surface Films Formed on Lithium in Propylene Carbonate Solutions. Journal of The Electrochemical Society 1987, 134, 1611-1620.
    108. Peled, E.; Golodnitsky, D.; Ardel, G., Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes. Journal of The Electrochemical Society 1997, 144, L208-L210.
    109. Peled, E.; Golodnttsky, D.; Ardel, G.; Menachem, C.; Tow, D. B.; Eshkenazy, V., The Role of Sei in Lithium and Lithium Ion Batteries. MRS Online Proceedings Library Archive 1995, 393.
    110. Gauthier, M.; Carney, T. J.; Grimaud, A.; Giordano, L.; Pour, N.; Chang, H.-H.; Fenning, D. P.; Lux, S. F.; Paschos, O.; Bauer, C., Electrode–Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights. The journal of physical chemistry letters 2015, 6, 4653-4672.
    111. Zaban, A.; Zinigrad, E.; Aurbach, D., Impedance Spectroscopy of Li Electrodes. 4. A General Simple Model of the Li− Solution Interphase in Polar Aprotic Systems. The Journal of Physical Chemistry 1996, 100, 3089-3101.
    112. Cohen, Y. S.; Cohen, Y.; Aurbach, D., Micromorphological Studies of Lithium Electrodes in Alkyl Carbonate Solutions Using in Situ Atomic Force Microscopy. The Journal of Physical Chemistry B 2000, 104, 12282-12291.
    113. Gofer, Y.; Ben-Zion, M.; Aurbach, D., Solutions of Liasf6 in 1, 3-Dioxolane for Secondary Lithium Batteries. Journal of power sources 1992, 39, 163-178.
    114. Qian, J.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J.-G., High Rate and Stable Cycling of Lithium Metal Anode. Nature communications 2015, 6, 6362.
    115. Suo, L.; Hu, Y.-S.; Li, H.; Armand, M.; Chen, L., A New Class of Solvent-in-Salt Electrolyte for High-Energy Rechargeable Metallic Lithium Batteries. Nature communications 2013, 4, 1481.
    116. Thomas, M.; Bruce, P.; Goodenough, J. B., Ac Impedance Analysis of Polycrystalline Insertion Electrodes: Application to Li1− X Coo2. Journal of The Electrochemical Society 1985, 132, 1521-1528.
    117. Aurbach, D.; Markovsky, B.; Rodkin, A.; Levi, E.; Cohen, Y.; Kim, H.-J.; Schmidt, M., On the Capacity Fading of Licoo2 Intercalation Electrodes:: The Effect of Cycling, Storage, Temperature, and Surface Film Forming Additives. Electrochimica Acta 2002, 47, 4291-4306.
    118. Dedryvere, R.; Foix, D.; Franger, S.; Patoux, S.; Daniel, L.; Gonbeau, D., Electrode/Electrolyte Interface Reactivity in High-Voltage Spinel Limn1. 6ni0. 4o4/Li4ti5o12 Lithium-Ion Battery. The Journal of Physical Chemistry C 2010, 114, 10999-11008.
    119. Aurbach, D.; Levi, M. D.; Levi, E.; Teller, H.; Markovsky, B.; Salitra, G.; Heider, U.; Heider, L., Common Electroanalytical Behavior of Li Intercalation Processes into Graphite and Transition Metal Oxides. Journal of The Electrochemical Society 1998, 145, 3024-3034.
    120. Sloop, S. E.; Pugh, J. K.; Kerr, J. B.; Kinoshita, K., Chemical Reactivity of Pf5 and Lipf6 in Ethylene Carbonate/Dimethyl Carbonate.
    121. Aurbach, D.; Weissman, I.; Schechter, A.; Cohen, H., X-Ray Photoelectron Spectroscopy Studies of Lithium Surfaces Prepared in Several Important Electrolyte Solutions. A Comparison with Previous Studies by Fourier Transform Infrared Spectroscopy. Langmuir 1996, 12, 3991-4007.
    122. Aurbach, D.; Zaban, A.; Schechter, A.; Ein‐Eli, Y.; Zinigrad, E.; Markovsky, B., The Study of Electrolyte Solutions Based on Ethylene and Diethyl Carbonates for Rechargeable Li Batteries I. Li Metal Anodes. Journal of The Electrochemical Society 1995, 142, 2873-2882.
    123. Browning, J. F.; Baggetto, L.; Jungjohann, K. L.; Wang, Y.; Tenhaeff, W. E.; Keum, J. K.; Wood III, D. L.; Veith, G. M., In Situ Determination of the Liquid/Solid Interface Thickness and Composition for the Li Ion Cathode Limn1. 5ni0. 5o4. ACS applied materials & interfaces 2014, 6, 18569-18576.
    124. Cherkashinin, G.; Motzko, M.; Schulz, N.; Späth, T.; Jaegermann, W., Electron Spectroscopy Study of Li [Ni, Co, Mn] O2/Electrolyte Interface: Electronic Structure, Interface Composition, and Device Implications. Chemistry of Materials 2015, 27, 2875-2887.
    125. Ensling, D.; Cherkashinin, G.; Schmid, S.; Bhuvaneswari, S.; Thissen, A.; Jaegermann, W., Nonrigid Band Behavior of the Electronic Structure of Licoo2 Thin Film During Electrochemical Li Deintercalation. Chemistry of Materials 2014, 26, 3948-3956.
    126. Pereira, D.; Williams, J., Origin and Evolution of High Throughput Screening. Brit J Pharmacol 2007, 152, 53-61.
    127. Pyzer-Knapp, E. O.; Suh, C.; Gómez-Bombarelli, R.; Aguilera-Iparraguirre, J.; Aspuru-Guzik, A., What Is High-Throughput Virtual Screening? A Perspective from Organic Materials Discovery. Annual Review of Materials Research 2015, 45, 195-216.
    128. Samuel, A. L., Some Moral and Technical Consequences of Automation—a Refutation. Science 1960, 132, 741-742.
    129. Strand, D.; Bailey, M. In Application of High Throughput Experimentation to Machine Learning Algorithms for the Development of Lithium Ion Battery Materials, Meeting Abstracts, The Electrochemical Society: 2019; pp 23-23.
    130. Iwasaki, Y.; Takeuchi, I.; Stanev, V.; Kusne, A. G.; Ishida, M.; Kirihara, A.; Ihara, K.; Sawada, R.; Terashima, K.; Someya, H., Machine-Learning Guided Discovery of a High-Performance Spin-Driven Thermoelectric Material. arXiv preprint arXiv:1805.02303 2018.
    131. Goldsmith, B. R.; Esterhuizen, J.; Liu, J. X.; Bartel, C. J.; Sutton, C. A., Machine Learning for Heterogeneous Catalyst Design and Discovery. AIChE-Journal 2018, 64, 2311-2323.
    132. Baumes, L.; Serra, J.; Serna, P.; Corma, A., Support Vector Machines for Predictive Modeling in Heterogeneous Catalysis: A Comprehensive Introduction and Overfitting Investigation Based on Two Real Applications. Journal of combinatorial chemistry 2006, 8, 583-596.
    133. Schlexer Lamoureux, P.; Winther, K.; Garrido Torres, J. A.; Streibel, V.; Zhao, M.; Bajdich, M.; Abild-Pedersen, F.; Bligaard, T., Machine Learning for Computational Heterogeneous Catalysis. ChemCatChem 2019.
    134. Takasao, G.; Wada, T.; Thakur, A.; Chammingkwan, P.; Terano, M.; Taniike, T., Machine Learning-Aided Structure Determination for Ticl4-Capped Mgcl2 Nanoplate of Heterogeneous Ziegler-Natta Catalyst. ACS Catalysis 2019.
    135. Almasi, P. P. https://hackernoon.com/3-ways-blockchain-will-unleash-the-full-potential-of-machine-learning-3d3a4d350b1.
    136. Liu, Y.; Zhao, T.; Ju, W.; Shi, S., Materials Discovery and Design Using Machine Learning. Journal of Materiomics 2017, 3, 159-177.
    137. Weininger, D., Smiles, a Chemical Language and Information System. 1. Introduction to Methodology and Encoding Rules. Journal of chemical information and computer sciences 1988, 28, 31-36.
    138. Weininger, D.; Weininger, A.; Weininger, J. L., Smiles. 2. Algorithm for Generation of Unique Smiles Notation. Journal of chemical information and computer sciences 1989, 29, 97-101.
    139. Sun, Y.; Wang, Y., New Insights into the Electroreduction of Ethylene Sulfite as an Electrolyte Additive for Facilitating Solid Electrolyte Interphase Formation in Lithium Ion Batteries. Physical Chemistry Chemical Physics 2017, 19, 6861-6870.
    140. Ren, F.; Zuo, W.; Yang, X.; Lin, M.; Xu, L.; Zhao, W.; Zheng, S.; Yang, Y., The Comprehensive Understanding of Reduction Mechanisms of Ethylene Sulfite in Ec-Based Lithium-Ion Batteries. The Journal of Physical Chemistry C 2019.
    141. Leggesse, E. G.; Jiang, J.-C., Theoretical Study of the Reductive Decomposition of Ethylene Sulfite: A Film-Forming Electrolyte Additive in Lithium Ion Batteries. The Journal of Physical Chemistry A 2012, 116, 11025-11033.
    142. Stewart, J. J., Optimization of Parameters for Semiempirical Methods V: Modification of Nddo Approximations and Application to 70 Elements. Journal of Molecular modeling 2007, 13, 1173-1213.
    143. G. Rauhut, A. A., J.; Chandrasekhar, T. S., W. Sauer, B.; Beck, M. H., P. Gedeck and T. Clark,; VAMP 6.5, O. M. L., The; Medawar Centre, O. S. P.; Oxford OX4 4GA, E., 1997.
    144. Varma-O'Brien, S.; Brown, F. K.; LeBeau, A.; Brown, R. D., Changing Paradigms in Drug Discovery: Scientific Business Intelligence™ and Workflow Solutions. Current Computer-Aided Drug Design 2008, 4, 13-22.
    145. Hwang, C.-L.; Masud, A. S. M., Multiple Objective Decision Making—Methods and Applications: A State-of-the-Art Survey; Springer Science & Business Media, 2012; Vol. 164.
    146. Barone, V.; Cossi, M., Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. The Journal of Physical Chemistry A 1998, 102, 1995-2001.
    147. Pearson, R. G., Absolute Electronegativity and Hardness: Applications to Organic Chemistry. The Journal of Organic Chemistry 1989, 54, 1423-1430.
    148. Halls, M. D.; Tasaki, K., High-Throughput Quantum Chemistry and Virtual Screening for Lithium Ion Battery Electrolyte Additives. Journal of Power Sources 2010, 195, 1472-1478.
    149. Breiman, L., Random Forests. Machine learning 2001, 45, 5-32.
    150. Perner, P.; Zscherpel, U.; Jacobsen, C., A Comparison between Neural Networks and Decision Trees Based on Data from Industrial Radiographic Testing. Pattern Recognition Letters 2001, 22, 47-54.
    151. Geurts, P.; Ernst, D.; Wehenkel, L., Extremely Randomized Trees. Machine learning 2006, 63, 3-42.
    152. Brownlee, J., A Gentle Introduction to Xgboost for Applied Machine Learning. Machine Learning Mastery. Available online: http://machinelearningmastery. com/gentle-introduction-xgboost-appliedmachine-learning/(accessed on 2 March 2018) 2016.
    153. Finney, D., Was This in Your Statistics Textbook? Vi. Regression and Covariance. Experimental Agriculture 1989, 25, 291-311.
    154. Draper, N. R., The Box‐Wetz Criterion Versus R2. Journal of the Royal Statistical Society: Series A (General) 1984, 147, 100-103.

    無法下載圖示 全文公開日期 2024/08/22 (校內網路)
    全文公開日期 2024/08/22 (校外網路)
    全文公開日期 2024/08/22 (國家圖書館:臺灣博碩士論文系統)
    QR CODE