簡易檢索 / 詳目顯示

研究生: 楊儒斌
Ru-bing Yang
論文名稱: IEEE 1901寬頻電力線系統在AWAN通道下之效能分析
The performance of IEEE 1901 powerline broadband system under the AWAN channel
指導教授: 曾德峰
Der-Feng Tseng
口試委員: 韓永祥
Yunghsiang S. Han
白宏達
Hung-Ta Pai
張立中
Li-Chung Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 中文
論文頁數: 74
中文關鍵詞: 寬頻電力線通訊IEEE 1901標準AWAN通道限幅器
外文關鍵詞: broadband power line communications, IEEE 1901 standard, AWAN channel, limiter
相關次數: 點閱:461下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  本文主要目標為探討使用渦輪編碼器(turbo encoder)以及經由OFDM調變(Orthogonal frequency-division multiplexing modulation)後的訊號,附載在寬頻電力線系統上,接收端的解碼效果,是否會得到更好的錯誤更正能力。本文的環境主要假設為建物室內;由於電力線上經常會因為電器的開關和不定時的運作,而產生一些無法預期的脈衝訊號。採用脈衝雜訊通道(Impulse noise model)來模擬通道中此雜訊的特徵,便顯得至為貼切。
  本文主要是使用Additive White Class A Noise(AWAN) channel來模擬寬頻電力線上的環境,這也是目前較常見的電力線雜訊模型之一;整體的架構是依據IEEE 1901 標準中的實體層部分,而本文中選用的是1901 Frame Control mode來創建。利用電腦軟體模擬較為廣泛使用的接收器,並且分析其錯誤位元率。為了降低環境中較大雜訊所造成的影響,在本文中也使用目前最常用的限幅器(Limiter)用以提高解碼的效能。


The main objective in this paper is to explore the use of turbo encoder and the signal which use OFDM(Orthogonal frequency-division multiplexing) modulation. For broadband power line communication systems, we wonder whether it will get the better error correction capacity at the front-end receiver. In this paper, the environment is assumed that in the home building ; It produces some unexpected impulse noise thanks to turn the electric equipment on and off Occasionally. Here we adopt Impulse noise model to simulate the characteristics of this channel, it’s more appropriate.
In this paper we use Additive White Class A Noise (AWAN) channel to simulate broadband power line environment, which is the more common model of power line noise model currently; the overall architecture is based on the part of the physical layer in IEEE 1901 standard, and we select the 1901 Frame Control mode to create it. By using computer software to simulate the widely used receiver, and we can analyze the bit error rate. In order to reduce the large noise in the environment, we also use the limiter to improve the decoding performance in this paper.

目 錄 第1章 緒論 1 1.1 研究背景 1 1.2 研究目的 1 1.3 章節概述 1 第2章 電力線的模擬環境 3 2.1 電力線通訊簡介 3 2.2 脈衝雜訊的環境創建 4 2.2.1 Bernoulli-Gaussian (BG) 脈衝雜訊模型 4 2.2.2 Additive White Class A Noise (AWAN) 模型 4 2.2.3 BG脈衝雜訊模型和AWAN模型比較 5 2.3 AWAN模型的近似與PDF模擬圖 6 第3章 IEEE 1901架構 8 3.1 系統架構圖 8 3.1.1 傳統的單輸入渦輪碼 8 3.1.2 未使用OFDM調變的雙輸入渦輪碼(1901標準的渦輪編碼器) 9 3.1.3 基於IEEE 1901標準下的雙輸入渦輪碼 10 3.2 穿刺(puncture)的使用及傳送方式 10 3.3 交織器(interleaver)的介紹 12 3.3.1 渦輪碼中使用的交織器 12 3.3.2 1901 FFT FC交織器 14 3.4 分集複製(Diversity copier)與映射(mapping)的方式 17 第4章 渦輪碼(Turbo code)與限幅器(Limiter) 20 4.1 編碼器(encoder) 20 4.1.1 單輸入的編碼器 20 4.1.2 IEEE 1901標準的編碼器(雙輸入) 23 4.2 限幅器(limiter)的使用 25 4.3 解碼器(decoder) 27 4.3.1 AWGN通道部分 27 4.3.1.1 單輸入的解碼器 27 4.3.1.2 雙輸入的解碼器 32 4.3.2 AWAN通道部分 34 4.3.2.1 未經過OFDM調變的解碼器 34 4.3.2.2 使用OFDM調變的解碼器 34 第5章 模擬結果 36 5.1 AWGN通道 36 5.1.1 傳統的單輸入渦輪碼 36 5.1.2 未使用OFDM調變的雙輸入渦輪碼(1901標準的渦輪編碼器) 37 5.1.3 基於IEEE 1901標準下的雙輸入渦輪碼 38 5.2 AWAN通道 39 5.2.1 傳統的單輸入渦輪碼 39 5.2.2 未使用OFDM調變的雙輸入渦輪碼(1901標準的渦輪編碼器) 40 5.2.3 基於IEEE 1901標準下的雙輸入渦輪碼 41 5.2.3.1 模擬結果1 41 5.2.3.2 模擬結果2 46 第6章 結論與未來研究方向 51 附錄 54

[1] IEEE Std 1901-2010, “IEEE Standard for Broadband over Power Line Networks: Medium Access Control and Physical Layer Specifications,” IEEE Communi- cations Society, December 2010.
[2] “HomePlug 1.0 Technical White Paper,” http://www.homeplug.org
[3] “HomePlug AV White Paper,” http://www.homeplug.org
[4] “HomePlug GreenPHY White Paper,” http://www.homeplug.org
[5] Y. H. Ma and P. L. So, “Performance analysis of OFDM systems for broaband power line communications under impulsive noise and multipath effects,” IEEE Trans. On Power Delivery, vol. 20, Apr. 2005.
[6] M. Ghosh, “Analysis of the effect of impulsive noise on multicarrier and single carrier QAM systems,” IEEE Trans. Commun., vol. 44, Feb. 1996.
[7] D. Middleton, “Statistical-physical model of electromagnetic interference,” IEEE Trans. Electromagn. Compat., vol. EMC-19, no. 3, pp. 106 – 126, Aug. 1977.
[8] D. Middleton, “Procedures for determining the parameters of the firstorder canonical models of Class A and Class B electromagnetic interference [10],” IEEE Trans. Electromagn. Compat., vol. EMC-21, no. 3, pp. 190–208, Aug. 1979.
[9] Shu Lin, Costello. Error Control Coding (2nd edition). United States:Prentice Hall, 2004.
[10] Bernard Sklar. Digital Communications: Fundamentals and Applications (2nd Edition). United States: Prentice Hall, 2001.
[11] Ga‥etan Ndo, Pierre Siohan, Marie-H′el`ene Hamon and J′er′emy Horard, “Optimization of Turbo Decoding Performance in the Presence of Impulsive Noise Using Soft Limitation at the Receiver Side,” in Proc. IEEE Global Telecommunications Conf. GLOBECOM’08, 2008.
[12] S. V. Zhidkov, “Performance analysis and optimization of OFDM receiver with blanking nonlinearity in impulsive noise environment,” IEEE Trans. Veh. Technol., vol. 55, no. 1, pp. 234-242, Jan. 2006.
[13] Y. Ma, P. So, and E. Gunawan, “Performance analysis of OFDM systems for broadband power line communications under impulsive noise and multipath effects,” IEEE Trans. Power Del., pp. 674–681, Apr. 2005.
[14] D.-F. Tseng, Y.-S. Han, W.-H. Mow and J. Deng, “Efficient decoding over power-line channels,” IEEE Fifth International Workshop on Signal Design and its Applications in Communications (IWSDA'11), China, 10-14 Oct. 2011, pp. 138 - 141.
[15] Y.-S. Han. Class Lecture, Topic:”Turbo decoding.” Communication Engineering, National Taiwan University of Science and Technology, Taipei, 2010.
[16] Daisuke Umehara, Hiroshi Yamaguchi, and Yoshiteru Morihiro, “Turbo Decoding in Impulsive Noise Environment,” in Proc. IEEE Global Telecommunications Conf. GLOBECOM’04, Vol. 1, Japan, 2004, pp. 194 - 198.

QR CODE