簡易檢索 / 詳目顯示

研究生: 柯舜凱
Shun-Kai Ko
論文名稱: 碳纖維強化聚酯複合材料之繞切成型研究
Cutting mechanics, tool wear and surface integrity following routing of CFRP composite materials
指導教授: 郭俊良
Chun-Liang kuo
口試委員: 蔡宏營
Hung-Yin Tsai
鍾俊輝
Chun-Hui Chung
劉孟昆
Meng-Kun Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 80
中文關鍵詞: 碳纖維強化聚酯(CFRP)複合材料鑽石鍍層刀具繞切成型加工切削力模型材料表面完整性
外文關鍵詞: Carbon fiber-reinforced plastic (CFRP), Diamond-coated tool, Routing, Cutting force model, Surface integrity
相關次數: 點閱:304下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

編織型式之碳纖維強化聚酯(Woven Carbon Fiber Reinforced Plastics)複合材料,具有高的纖維佔比(Volume fraction: ~58%),高比強度(2.5-4.5 GPa)與比彈性模數(800 GPa),更適合兼具輕量化與高強度的結構應用。但是,依照強度需求而鋪陳之碳纖維複合材料常不具備均質性與等向性,造成繞切成型加工時,切削刀具產生非預期之震動。此外,碳纖維之高硬度(~HV500)也對切削刀具造成極大的磨損,進而導致切削力增加,影響加工表面品質及材料移除能力。此研究以鑽石鍍層之直刃、螺旋刃與交叉刃刀具,配合高轉速(100-120 m/min)與高進給率(0.4-0.6 mm/rev)之參數條件對碳纖維複合材料,進行正交、斜交切削之加工評估。觀測指標為切削力、刀具磨耗及加工後之表面完整性,與三者之間的交互作用影響。在發展切削力之分析模型中,可以藉由刀具幾何之函數關係來預測切削分力之瞬時分佈,進而調整刀具幾何來控制切削力之大小與分佈,降低刀具磨耗與提高加工表面之完整性。配合變異數分析(ANOVA)與統計計量方法,進行多指標之最佳化。最佳化結果說明,三種刀具幾何在相同參數測試下(V: 120 m/min,f: 0.52 mm/rev),刀具磨耗在測試終止(11,520 mm)時,螺旋刃刀具呈現最小的磨耗(VB 螺旋刃: 25.08 μm)與最小之切削力(F 螺旋刃:~116.5 N),其對應之加工表面粗糙度為Ra 螺旋刃: 2.20 μm。在掃描式電子顯微鏡之觀測下,切削參數對於三種刀具幾何之磨耗與加工表面之形貌,已完整建立。當使用直刃刀具進行正交切削時,加工表面之碳纖維呈現垂直於進刀方向之斷裂,為彎曲之拉應力破壞。使用螺旋刃之斜交切削時,碳纖維呈現與刀具進刀方向1-3°之拉應力破壞。而使用交叉刃刀具時,碳纖維之破壞依刀刃交叉型式,呈現3-5°之交叉,為拉力與挫曲破壞之型式。


Carbon fiber-reinforced plastic (CFRP) composite materials are increasingly used in the modern aircraft industry due to their superior specific strength and elastic modulus. Routing is one of the key process for shaping and trimming CFRP workpiece materials. However, the dimension accuracy and material integrity are very challenging to maintain owing to the anisotropic and inhomogeneous natures in the composites. In this work, cutting forces were modeled with the considerations of the cutting edge geometry and the associated angles in the analytical equations for the orthogonal and oblique cutting. Experimental works were conducted by using diamond-coated tools with the designs of the straight, nicked-helical and cross flutes, under the cutting speed (93.75-120 m/min) and feed rate (0.4-0.52 mm/rev) for the evaluations of the cutting force, tool wear, machined surface roughness
and alternation of the microstructure. Statistical methods of the main effect plots and ANOVA are used for the analysis of significance of the operating parameters. Whereas the established force modeled were validated by the experimental results with the least errors (R2: ~99.08%). When Cutting speed 120 m/min and feed rate 0.52 mm/rev are employed, the utilization of straight flute routers resulted in the highest cutting force of 403.9 N, surface roughness of Ra~1.00 μm and tool flank wear of VB 52.2 μm whilst the nicked helix flutes routers produced lower cutting
force (189.2 N) and tool flank wear (25.08 μm) with surface roughness 2.49 μm. Progression of the tool wear (VB value) is quantitatively demonstrated with the corresponding flank wear patterns. Scanned 3D topography and surface roughness in the machined surface are presented and discussed.

摘要 ......................................................................................................... I Abstract ................................................................................................. III 致謝 ........................................................................................................ V 目錄 ....................................................................................................... VI 圖目錄 ................................................................................................... IX 表目錄 ................................................................................................... XI 第一章 研究介紹 ................................................................................ 1 第二章 文獻回顧 ................................................................................ 3 2.1 碳纖維複合材料之加工現況 ................................................. 3 2.2 碳纖維繞切之切削力與切削模型 ......................................... 4 2.3 碳纖維繞切之刀具磨耗 ......................................................... 6 2.4 碳纖維繞切工件之表面完整性 ............................................. 8 2.5 變異數分析 ............................................................................ 9 第三章 實驗工作 .............................................................................. 10 3.1 實驗材料 .............................................................................. 10 3.2 切削刀具 .............................................................................. 10 3.3 實驗設備 .............................................................................. 11 3.3.1 加工設置及夾治具 ..................................................... 11 3.3.2 切削力量測位置說明 ................................................. 12 3.3.3 切削力量測 ................................................................ 13 3.3.4 刀腹面磨耗說明 ......................................................... 14 3.3.5 刀具磨耗量測............................................................. 15 3.3.6 表面粗糙度(Ra)量測位置說明 .................................. 16 3.3.7 表面粗糙度量測 ......................................................... 17 3.4 實驗設計 .............................................................................. 18 3.5 統計檢定與分析 ................................................................... 18 第四章 實驗結果與討論 ................................................................... 19 4.1 切削力學模型....................................................................... 19 4.1.1 正交切削 .................................................................... 19 4.1.2 斜交切削 .................................................................... 26 4.1.3 複斜交切削 ................................................................ 31 4.2 切削力分析 .......................................................................... 38 4.2.1 切削力分析 ................................................................ 38 4.2.2 切削終止時之切削力分析 ......................................... 42 4.2.3 切削力之變異數分析 ................................................. 44 4.3 刀具磨耗分析....................................................................... 45 4.3.1 切削距離於因子測試陣列對刀具磨耗之影響 .......... 45 4.3.2 刀具磨耗對於切削力之影響 ..................................... 46 4.3.3 刀刃接觸長對刀具磨耗之影響 ................................. 47 4.3.4 刀具磨耗類型分析 ..................................................... 48 4.3.5 刀具磨耗之變異數分析 ............................................. 49 4.4 表面粗糙度分析 ................................................................... 50 4.4.1 表面粗糙度(Ra)之量測結果 ...................................... 50 4.4.2 切削終止時之纖維斷面分析 ..................................... 51 4.4.3 表面粗糙度之變異數分析 ......................................... 54 第五章 結論與未來展望 ................................................................... 56 5.1 文獻回顧總結....................................................................... 56 5.2 研究結果總結....................................................................... 56 5.3 未來展望 .............................................................................. 58 參考文獻 ............................................................................................... 59 附錄一 研究著作 ................................................................................. 63 附錄二 CNC 繞切加工程式碼 ............................................................. 65

[1] Kuo C, Li Z, Wang C. Multi-objective optimisation in vibration-assisted drilling of CFRP/Al stacks. Composite Structures. 2017;173:196-209.
[2] Kuo C, Wang C, Liu M. Interpretation of force signals into mechanical effects in vibration-assisted drilling of carbon fibre reinforced plastic (CFRP)/aluminium stack materials. Composite Structures. 2017;179:444-458.
[3] Che D, Saxena I, Han P, Guo P, Ehmann KF. Machining of Carbon Fiber Reinforced Plastics/Polymers: A Literature Review. Journal of Manufacturing Science and Engineering. 2014;136:034001 (22 pages).
[4] Jia Z, Su Y, Niu B, Zhang B, Wang F. The interaction between the cutting force and induced sub-surface damage in machining of carbon fiber-reinforced plastics. Journal of Reinforced Plastics and Composites. 2016;35:712-726.
[5] Henerichs M, Voß R, Kuster F, Wegener K. Machining of carbon fiber reinforced plastics: Influence of tool geometry and fiber orientation on the machining forces. CIRP Journal of Manufacturing Science and Technology. 2015;9:136-145.
[6] Sorrentino L, Turchetta S. Cutting forces in milling of carbon fibre reinforced plastics. International Journal of Manufacturing Engineering. 2014. (8 pages)
[7] Stephenson D. Material characterization for metal cutting force modeling. Journal of Engineering Materials and Technology. 1989;101:210-219.
[8] Slamani M, Chatelain J-F, Hamedanianpour H. Comparison of two models for predicting tool wear and cutting force components during high speed trimming of CFRP. International Journal of Material Forming. 2015;8:305-316.
[9] Li H, Qin X, He G, Price MA, Jin Y, Sun D. An energy based force prediction method for UD-CFRP orthogonal machining. Composite Structures. 2017;159:34-43.
[10] Zhou L, Peng F, Yan R, Yao P, Yang C, Li B. Analytical modeling and experimental validation of micro end-milling cutting forces considering edge radius and material strengthening effects. International Journal of Machine Tools and Manufacture. 2015;97:29-41.
[11] Kalla D, Sheikh-Ahmad J, Twomey J. Prediction of cutting forces in helical end milling fiber reinforced polymers. International Journal of Machine Tools and Manufacture. 2010;50:882-891.
[12] Wyeth DJ. An investigation into the mechanics of cutting using data from orthogonally cutting Nylon 66. International Journal of Machine Tools and Manufacture. 2008;48:896-904.
[13] Gaugel S, Sripathy P, Haeger A, Meinhard D, Bernthaler T, Lissek F, et al. A comparative study on tool wear and laminate damage in drilling of carbon-fiber reinforced polymers (CFRP). Composite Structures. 2016;155:173-183.
[14] Faraz A, Biermann D, Weinert K. Cutting edge rounding: An innovative tool wear criterion in drilling CFRP composite laminates. International Journal of Machine Tools and Manufacture. 2009;49:1185-1196.
[15] Sheikh-Ahmad J, Davim J. Tool wear in machining processes for composites. Machining Technology for Composite Materials: Elsevier; 2012;116-153.
[16] El-Hofy M, Soo S, Aspinwall D, Sim W, Pearson D, Harden P. Factors affecting workpiece surface integrity in slotting of CFRP. Procedia Engineering. 2011;19:94-109.
[17] Xu J, An Q, Chen M. A comparative evaluation of polycrystalline diamond drills in drilling high-strength T800S/250F CFRP. Composite Structures. 2014;117:71-82.
[18] Kuo C, Wang C, Ko S. Wear behaviour of CVD diamond-coated tools in the drilling of woven CFRP composites. Wear. 2018;398-399:1-12.
[19] Cadorin N, Zitoune R. Wear signature on hole defects as a function of cutting tool material for drilling 3D interlock composite. Wear. 2015;332:742-751.
[20] Raghuveer M, Yoganand S, Jagannadham K, Lemaster R, Bailey J. Improved CVD diamond coatings on WC–Co tool substrates. Wear. 2002;253:1194-1206.
[21] Duboust N, Melis D, Pinna C, Ghadbeigi H, Collis A, Ayvar-Soberanis S, Machining of carbon fibre: optical surface damage characterisation and tool wear study. Procedia CIRP. 2016;45:71-74.
[22] Haddad M, Zitoune R, Eyma F, Castanie B. Study of the surface defects and dust generated during trimming of CFRP: influence of tool geometry, machining parameters and cutting speed range. Composites Part A: Applied Science and Manufacturing. 2014;66:142-154.
[23] Schorník V, Daňa M, Zetková I. The influence of the cutting conditions on the machined surface quality when the CFRP is machined. Procedia Engineering. 2015;100:1270-1276.
[24] Roy RK. A primer on the Taguchi method: Society of Manufacturing Engineers, 2010.
[25] Trent EM, Wright PK. Metal cutting: Butterworth-Heinemann, 2000.
[26] ISO 8688-2. Tool life testing in milling-Part 2: End milling. First edition. 1989.
[27] Mari D, Clausen B, Bourke M, Buss K. Measurement of residual thermal stress in WC–Co by neutron diffraction. International Journal of Refractory Metals and Hard Materials. 2009;27:282-287.

QR CODE