研究生: |
黃治華 CHIH-HUA HUANG |
---|---|
論文名稱: |
強震預警技術應用於半主動斜面式滾動支承之研究 An application of earthquake early warning technology to seiactive control of a sloped rolling-type seismic isolation bearing |
指導教授: |
許丁友
Ting-Yu Hsu |
口試委員: |
許丁友
Ting-Yu Hsu 汪向榮 Shiang-Jung Wang 盧煉元 Lyan-Ywan Lu 朱世禹 Shih-Yu ,Chu |
學位類別: |
碩士 Master |
系所名稱: |
工程學院 - 營建工程系 Department of Civil and Construction Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 85 |
中文關鍵詞: | 智慧型滾動隔震支承 、可變式阻尼 、壓電致動器 、地震特性參數 、最大隔震支承位移 |
外文關鍵詞: | Intelligent rolling isolation support, Variable damping, Piezoelectric actuator, Seismic characteristic parameter, Maximum isolation support displacement |
相關次數: | 點閱:381 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統定阻尼式的滾動隔震支承,可能為了避免在少數大型地震下的位移反應超過設計位移而產生碰撞,而保守設計阻尼力,導致滾動隔震支承的加速度反應於一般地震下過度放大。本研究開發智慧型滾動隔震支承,嘗試將壓電致動器安裝於滾動隔震支承內,使滾動隔震支承具備可變式阻尼的功能。另一方面,若能於地震的初達波到達後的數秒內,利用現地型地震預警的技術,根據初達波特徵推估該次地震可能造成的最大位移反應,即可針對該次地震調整適當的阻尼,使小地震時阻尼小、加速度反應小,但大地震時阻尼大、加速度反應大,但是不至於發生碰撞。為達此一目的,首先必須瞭解何種特性的地震會使得最大位移反應過大。根據前人研究,傳統之設計反應譜之相關參數推估位移反應之變異性過大,猜測其主要原因為斜面式滾動隔震支承並無所謂的勁度與自然週期。因此本研究探討各種地震特性參數對於最大隔震支承位移反應的影響,尋找造成斜面式滾動隔震支承之最大位移變異性較低的參數,並提出可根據該參數控制滾動隔震支承之阻尼的控制方程式。在假設現地型強震預警技術可以準確預測該地震參數的條件下,即可根據所預測之該地震參數,控制壓電致動器增加阻尼力,並探討對於最大位移及加速度反應之控制效果。
In order to avoid collisions due to the displacement reaction exceeding the design displacement during some large earthquakes, the damping force of the rolling isolation support may be conservatively designed, resulting in the acceleration response being over-amplified during the general earthquakes. This research attempts to mount the piezoelectric actuator in the rolling isolation support, so that the rolling isolation support has the function of variable damping. On the other hand, if it is possible to estimate the maximum displacement response that may be caused by the coming earthquake based on the characteristics of the primary wave, within a few seconds after the arrival of the seismic wave, the damping can be adjusted for the coming earthquake. In order to achieve this goal, it is first necessary to understand which characteristics of the earthquake will cause the maximum displacement response to be too large. This study investigates the influence of various seismic parameters on the maximum displacement response of the isolation support, and proposes to control the damping of the rolling isolation support according to these parameters. Under the assumption that the earthquake early warning technology can accurately predict these seismic parameters, the piezoelectric actuator can be controlled to increase the damping force according to the predicted seismic parameters, and the control effect on the maximum displacement and acceleration response is studied.
[1] Hwang JS, Huang YN, Hung YH, Huang JC. “Applicability of seismic protective systems to structures with vibration sensitive equipment,” Journal of Structural Engineering, ASCE, 130(11): 2004,pp. 1676-1684.
[2] Nagarajaiah S, Xiaohong S. “Response of base-isolated USC hospital building in Northridge earthquake, ” Journal of Structural Engineering, ASCE, 126, 2000: pp. 1177-1186.
[3] Myslimaj B, Gamble S, Chin-Quee D. “Davies A. Base isolation technologies for seismic protection of museum artifacts, ” The 2003 IAMFA Annual Conference, San Francisco, California, September 21-24, 2003.
[4] Hamidi M, MH El Naggar. On the performance of SCF in seismic isolation of the interior equipment of buildings, Earthquake Engineering and Structural Dynamics, 2007; 36: 1581-1604.21-24, 2003.
[5] ISO-BaseTM Seismic Isolation Platform. http://www.worksafetech.com/pages/ISO %5FBase.html.
[6] CRS, Cosine Curved Rail System. http://www.oiles.co.jp/en/menshin/building/units/ crs.html.
[7] Fujita T. Seismic isolation of civil buildings in Japan. Progress in Structural Engineering and Materials, 1998; 1(3): 295-300.
[8] Stewart JP, Conte JP, Aiken ID. Observed behavior of seismically isolated buildings. Journal of Structural Engineering, ASCE, 1999; 125: 955-964.
[9] Kunde MC, Jangid RS. Seismic behavior of isolated bridges: A state-of-the-art review. Electronic Journal of Structural Engineering, 2003; 3: 140-170.
[10] Buckle IG, Constantinou MC, Dicleli M, Ghasemi H. Seismic isolation of highway bridges. Report No. MCEER-06-SP07, Multidisciplinary Center for Earthquake Engineering Research, University at Buffalo, State University of New York, Buffalo, NY, 2006.
[11] Skinner RI, Robinson WH, McVerry GH. An introduction to seismic isolation. Chichester, England: John Wiley and Sons; 1993.
[12] Naeim F, Kelly JM. Design of seismic isolated structures: from theory to practice. Wiley, New York, 1999.
[13] Al-Hussaini TM, Zayas VA, Constantinou MC. Seismic isolation of a multi-story frame structure using spherical sliding isolation systems. Report No. NCEER-94-0007, National Center of Earthquake Engineering Research, University at Buffalo, State University of New York, Buffalo, NY, 1994.
[14] Hamidi M, ElNaggar MH, Vafai A, Ahmadi G. Seismic isolation of buildings with sliding concave foundation (SCF), Earthquake Engineering and Structural Dynamics, 2003; 32: 15-29.
[15] Lin TW, Hone CC. Base isolation by free rolling rods under basement. Earthquake Engineering and Structural Dynamics, 1993; 22: 261-73.
[16] Lin TW, Chern CC, Hone CC. Experimental study of base isolation by free rolling rods. Earthquake Engineering and Structural Dynamics, 1995; 24: 1645-50.
[17] Jangid RS, Londhe YB. Effectiveness of elliptical rolling rods for base isolation. Journal of Structural Engineering, ASCE, 1998; 124: 469-472.
[18] Kasalanati A, Reinhorn AM, Constantinou MC, Sanders D. Experimental study of ball-in-cone isolation system. Proceedings of the ASCE Structures Congress XV, Portland, Oregon, April 13-16, 1997, 1191-1195.
[19] Zhou Q, Lu X, Wang Q, Feng D, Yao Q. Dynamic analysis on structures base-isolated by a ball system with restoring property. Earthquake Engineering and Structural Dynamics, 1998; 27: 773-791.
[20] Tsai MH, Wu SY, Chang KC, Lee GC. Shaking table tests of a scaled bridge model with rolling type seismic isolation bearings. Engineering Structures, 2007; 29(9): 694-702.
[21] Lee GC, Ou YC, Niu T, Song J, Liang Z. Characterization of a roller seismic isolation bearing with supplemental energy dissipation for highway bridges. Journal of Structural Engineering, ASCE, 2010; 136(5): 502-510.
[22] Ou YC, Song J, Lee GC. A parametric study of seismic behavior of roller seismic isolation bearings for highway bridges. Earthquake Engineering and Structural Dynamics, 2010; 39(5): 541-559.
[23] Mahmood H, Amirhossein S. Using orthogonal pairs of rollers on concave beds (OPRCB) as a base isolation system - part I: analytical, experimental and numerical studies of OPRCB isolators. The Structural Design of Tall and Special Buildings, 2011; 20(8): 928-950.
[24] Wang SJ, Hwang JS, Chang KC, Shiau CY, Lin WC, Tsai MS, Hong JX, Yang YH. Sloped multi-roller isolation devices for seismic protection of equipment and facilities. Earthquake Engineering and Structural Dynamics, 2014; 43(10): 1443-1461.
[25] 洪家翔,斜面式滾動隔震支承分析模型建立與試驗,碩士論文,台灣科技大學,台北,民國102年12月。
[26] Lambrou V, Constantinou MC. Study of seismic isolation systems for computer floors. Technical Report, NCEER-94-0020, National Center for Earthquake Engineering Research, University at Buffalo, State University of New York, Buffalo, NY, 1994.
[27] 許志隆,斜面式滾動隔震支承之地震力位移反應探討,碩士論文,台灣科技大學,台北,民國104年6月
[28] 卓忠陽,斜面式滾動隔震支承之多軸向遲滯行為試驗與地震力位移反應探討,碩士論文,台灣科技大學,台北,民國106年7月
[29] Wang SJ,Yu CH,Cho CY,Hwang JS. Effects of design and seismic parameters on horizontal displacement responses of sloped rolling-type seismic isolators. Structural Control and Health Monitoring 2019; 26(8):e2342.
[30] Wang SJ,Yu CH,Lin WC,Hwang JS,Chang KC,A generalized analytical model for sloped rolling-type isolation bearings.Engineer Structures 2017; 138: 434-446
[31] Satriano C., Wu Y.M., Zollo A. and Kanamori H., “Earthquake early warning: Concepts, methods and physical grounds,” Soil Dynamics and Earthquake Engineering, 31, 106–118 (2011)
[32] Somerville PG, Smith NF, Graves RW. Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity, Seismological Research Letters, 1997; 68(1): 94-127.
[33] Baker JW. Quantitative classification of near-fault ground motions using wavelet analysis. Bulletin of the Seismological Society of America, 2007; 97(5): 1486-1501.
[34] Shahi S K, Baker J W. An empirically calibrated framework for including the effects of near-fault directivity in probabilistic seismic hazard analysis. Bulletin of the Seismological Society of America, 2011, 101(2):742-755.
[35] G. Maddaloni, N. Caterino, G. Nestovito & A. Occhiuzzi. Use of Seismic Early Warning Information to Calibrate Variable Dampers for Structural Control of a Highway Bridge: Evaluation of the System Robustness. University of Naples “Parthenope”, Italy ,2012;