簡易檢索 / 詳目顯示

研究生: 孫翊峰
Yi-Feng Sun
論文名稱: 金屬玻璃鍍層應用於鑽石切割刀:提升切削性質與鍍層品質研究
Metallic Glass Coating for Diamond Dicing Blades: A Study for Improving Dicing Performance and Coating Quality
指導教授: 朱瑾
Jinn Chu
口試委員: 朱瑾
Jinn Chu
陳炤彰
Chao-Chang A. Chen
朱閔聖
Min-Sheng Chu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 156
中文關鍵詞: 晶圓切割基板切割鑽石切割刀金屬玻璃緩衝層低摩擦係數
外文關鍵詞: wafer dicing, substrate dicing, diamond dicing blade, thin film metallic glass (TFMG), buffer layer, low coefficient of friction (CoF)
相關次數: 點閱:276下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


Chapter 1. Introduction 1 1.1 Method of study 2 Chapter 2. Literature Review 3 2.1 Diamond dicing blade 3 2.1.1 Fabrication of diamond dicing blade 3 2.1.2 Metal bond dicing blade 6 2.1.3 Resin bond dicing blade 7 2.1.4 Electroformed dicing blade 7 2.2 Diamond blade dressing process 8 2.3 Wafer dicing process 9 2.3.1 Theory of dicing 11 2.3.2 Dicing parameter 13 2.3.3 Chipping defects discussion 15 2.4 Workpiece materials for diamond blades 17 2.4.1 Workpiece: Silicon 17 2.4.2 Workpiece: Silicon carbide 19 2.4.3 Workpiece: Printed circuit board (PCB) 21 2.4.4 Workpiece: Aluminum oxide plate (Al2O3) 22 2.5 Thin-film metallic glass (TFMGs) 23 2.6 Surface roughness 24 2.7 Coefficient of friction (CoF) 25 2.8 Buffer layer 26 2.9 High power impulse magnetron sputtering (HiPIMS) 27 2.10 Application of TFMG on dicing and improvement of dicing property 29 Chapter 3. Experimental Procedures 32 3.1 Diamond dicing blade and workpiece preparations 33 3.1.1 Diamond dicing blade preparations 33 3.1.2 Workpiece materials: silicon, silicon carbide, printed circuit board, Aluminum oxide plate 35 3.2 Thin-film deposition process 36 3.3 Material characterizations of TFMGs 40 3.3.1 Crystallographic analysis 40 3.3.2 Microstructure analysis 41 3.3.2.1 Scanning Electron Microscope (SEM) 41 3.3.2.2 Laser confocal microscope 42 3.3.3 Water contact angle machine 43 3.3.4 Nano-indenter 44 3.4 Automatic dicing saw machine 45 3.5 Chipping area on workpiece measurements 49 3.6 Comparison of kerf depth and angle 50 3.7 Surface roughness measurement 51 Chapter 4. Experimental Results 52 4.1 Characterizations of TFMG systems 52 4.1.1 Crystallographic analysis 52 4.1.2 Water contact angle measurement 53 4.1.3 Hardness of TFMGs coating 54 4.1.4 Scratching experiment of TFMGs coating 54 4.2 TFMGs coating on diamond dicing blades 57 4.3 Dicing performance on different workpieces 61 4.3.1 Dicing performance on silicon 62 4.3.1.1 Dicing results with different TFMG‐coated blades 62 4.3.1.2 Effects of TFMG coating on chipping area fraction 62 4.3.1.3 Effects of TFMG coating on kerf depth and angle 66 4.3.1.4 Surface morphology of kerfs, surface roughness 70 4.3.1.5 Dicing results on silicon wafer 71 4.3.2 Dicing performance on Printed circuit board (PCB) 72 4.3.2.1 Dicing results with different TFMG‐coated blades 72 4.3.2.2 Effects of TFMG coating on chipping area fraction 72 4.3.2.3 Effects of TFMG coating on kerf depth 76 4.3.2.4 Surface morphology of kerfs, surface roughness 78 4.3.2.5 Dicing results on Printed circuit board (PCB) 79 4.3.3 Dicing performance on Aluminum oxide plate (Al2O3) 80 4.3.3.1 Dicing results with different TFMG-coated blades 80 4.3.3.2 Effects of TFMG coating on chipping area friction 80 4.3.3.3 Effects of TFMG coating on kerf depth 84 4.3.3.4 Surface morphology of kerfs, surface roughness 86 4.3.3.5 Dicing results on Aluminum oxide plate (Al2O3) 87 4.3.4 Dicing performance on silicon carbide 88 4.3.4.1 Dicing results with different TFMG coated blades 89 4.3.4.2 Effects of TFMG coating on chipping area friction 89 4.3.4.3 Effects of TFMG coating on kerf depth 92 4.3.4.4 Surface morphology of kerfs, surface roughness 94 4.3.4.5 Dicing results with different dicing parameters 96 4.3.4.6 Effects of TFMG coating on chipping area fraction 96 4.3.4.7 Effects of TFMG coating on kerf depth 103 4.3.4.8 Surface morphology of kerfs, surface roughness 109 4.3.4.9 Dicing result with buffer layer 112 4.3.4.10 Effects of TFMG coating on chipping area fraction 112 4.3.4.11 Effects of TFMG coating on kerf depth 119 4.3.4.12 Comparison of surface morphology of kerfs, surface roughness 125 4.3.4.13 Dicing results on silicon carbide wafer 127 4.3.4.14 Comparison of dicing quality between single layer of TFMG and buffer layer 128 4.4 Comparison of spindle current for different workpieces 129 Chapter 5. Conclusions and future works 134 5.1 Conclusions 134 5.2 Future works 135 References 136 Appendix 140

[1] Esashi, M., Wafer level packaging of MEMS. Journal of Micromechanics and Microengineering, 2008. 18(7).
[2] Lange, P., et al., Dicing of fragile MEMS structures. MRS Proceedings, 2011. 1139.
[3] Baranski, M., et al., Wafer-level fabrication of microcube-typed beam-splitters by saw-dicing of glass substrate. IEEE Photonics Technology Letters, 2014. 26(1): p. 100-103.
[4] 賴柏彰,金屬玻璃鍍層提升鑽石刀片切削性質之研究. 2019.
[5] Chu, J.P., et al., Metallic glass coating for improving diamond dicing performance. Sci Rep, 2020. 10(1): p. 12432.
[6] 章家維, 金屬玻璃鍍層鑽石切割刀提升晶圓切削能力與良率之改善. 2020.
[7] Chu, J.P., et al., Non-stick syringe needles: Beneficial effects of thin film metallic glass coating. Sci Rep, 2016. 6: p. 31847.
[8] Chu, J.P., et al., Zr-based glass-forming film for fatigue-property improvements of 316L stainless steel: Annealing effects. Surface and Coatings Technology, 2011. 205(16): p. 4030-4034.
[9] Zhou H., et al., High-speed dicing of silicon wafers conducted using ultrathin blades, Int J Adv Manuf Technol, 2013, 66(5–8):947–953.
[10] Corporation., H.H.-T., 2. Semiconductor - metrology and inspection, Hitachi High-Tech GLOBAL. 2021.
[11] Tools, U.I.S., Selecting right diamond dicing blade for your application.
[12] Yuan, Z., et al., Investigation on the fabrication of dicing blades with different sintering methods for machining hard-brittle material wafers, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2018, 233(7): p. 1781- 1793.
[13] Zewei Yuan., et al., Preparation and characterization of ultra-thin dicing blades with different bonding properties, The International Journal of Advanced Manufacturing Technology, 2022.
[14] Corporation., D., B1A _ dicing blades _ product information _ DISCO Corporation, 2022.
[15] Wang J, The experimental study on key manufacture technology of precision super hard abrasive ultra-thin grinding wheel, Dissertation Henan Univ Technol, 2015.
[16] Lin Liang., et al., Positive-bevel edge termination for SiC reversely switched dynistor, Microelectronic Engineering, 2016, 161: 52–55.
[17] Chen K., et al., Performance optimization of Al-based bond matrix in metallic bond diamond wheel, Diam Abrasives Eng, 2018, 38(02):20–25.
[18] Wang J., et al., Arc envelope grinding of sapphire steep aspheric surface with sic-reinforced resin-bonded diamond wheel, Int J Precis Eng Manuf Green Tech, 2021, 8:1083–1094.
[19] Tang Y., et al., Research and application status of ultrathin diamond dicing blade, Superhard Mater Eng, 2010, 22(06):34– 37.
[20] Philipp von Witzendorff., et al., Dicing of hard and brittle materials with on-machine laser-dressedmetal-bonded diamond blades, Precision Engineer, 2014, 38:162-167.
[21] Yang L., et al., Microstructures and mechanical properties of AZ31 magnesium alloys fabricated via vacuum hot-press sintering, J Alloys Compd, 2021, 870:159473.
[22] Brinksmeier E, Riemer O, Gläbe: R. Fertigung ultrapräziser Mikrostrukturen fürden optischen Formenbau, Ind Manage, 2004:20:36.
[23] Chen S, Lin S, Study of an on-line precision microgroove generating process on silicon wafer using a developed ultra-thin diamond wheel-tool, Diam Relat Mater,2011, 20(3):339–342.
[24] Su Z., et al., Cutting performance evaluation of nickel-plated graphite Fe-based diamond saw blades, Diam Relat Mater,2021, 114.
[25] Tsunehisa Suzuki., et al., Control of grain dispersion by using flexural standing wave vibration disks, Proceedings of Symposium on Ultrasonic Electronics,2012, Vol. 33 p. 87-88.
[26] Cho HJ., et al., Efects of diamond particle size on the formation of copper matrix and the thermal transport properties in electrodeposited copper-diamond composite materials, J Alloys Compd, 2019, 791:1128–1137.
[27] B1A SERIES metal bond blades. https://www.disco.co.jp/eg/products/blade/b1a.html
[28] R07 SERIES resin bond blades. https://www.disco.co.jp/eg/products/blade/r07.html
[29] Z09 SERIES electroformed bond blades. https://www.disco.co.jp/eg/products/blade/z09.html
[30] Corporation., wafer dicing process, Disco, 2022.
[31] Masayoshi Kumagai., et al., Advanced Dicing Technology for Semiconductor Wafer—Stealth Dicing, IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 2007, VOL. 20, NO. 3.
[32] Y. TANG., et al., LSER DICING OF SILICON WAFER, Surface Review and Letters, 2008, Vol. 15, No, 01 and 02, p.153-159.
[33] Shang Gao., et al., Edge chipping of silicon wafers in diamond grinding, International Journal of Machine Tools & Manufacture 64, 2013, 31-37.
[34] Hongxiu Zhou., et al., High-speed dicing of silicon wafers conducted using ultrathin blades, Int J Adv Manuf Technol, 2013, 66:947–953.
[35] S. Y. Luo, Z. W. Wang, Studies of chipping mechanisms for dicing silicon wafers, Int J Adv Manuf Technol, 2008, 35:1206–1218.
[36] Daniel Lu, C.P.W., Materials for advanced packaging, 2009.
[37] Marks, M.R., Z. Hassan, and K.Y. Cheong, Ultrathin wafer pre-assembly and assembly process technologies: a review. Critical Reviews in Solid State and Materials Sciences, 2015. 40(5): p. 251-290.
[38] Miwa T, Inasaki I, Blade wear and wafer chipping in dicing processes. In: Proceedings of Int Conf Precis Eng, Taiwan, 1997, 397– 402.
[39] Sung-Chul Kim., et al., Machining characteristics on the ultra-precision dicing of silicon wafer, Int J Adv Manuf Technol, 2007, 33: p662-667.
[40] Lei., et al., Die singulation technologies for advanced packaging, A critical review, J. Vac. Sci. Technol, 2011, B 30, 040801.
[41] M.Y. Tsai, C.H. Chen., Evaluation of test methods for silicon die strength, Microelectronics Reliability 48, 2008, 933–941.
[42] Xue Wang., et al., Study on precision dicing process of SiC wafer with diamond dicing blades, : Nanotechnol, Precis, Eng. 4, 033004, 2021.
[43] J.H. Liu., et al., Grinding wheels for manufacturing of silicon wafers: A literature review, International Journal of Machine Tools & Manufacture, 47, 2007, 1–13.
[44] R. Schiitzthauer, P. Fromherz: Eur. J. Neurosci. 10, 1956 (1998).
[45] PHILIP G. NEUDECK, Progress in Silicon Carbide Semiconductor Electronics Technology, Journal of Electronic Materials, Vol. 24, No. 4 , 1995.
[46] P. Friedrichs, T. Kimoto, L. Ley, G. Pensl, Silicon carbide, in: Growth, Defects, and Novel Applications, vol. 1, Wiley-VCH Verlag GmbH&Co KGaA, Weinheim, 2010.
[47] X. Qian., et al, Anisotropic thermal conductivity of 4H and 6H silicon carbide measured using time-domain thermoreflectance, Materials Today Physics 3 (2017) 70-75.
[48] TECDIA, Singulating hard wafer material_SiC.
[49] Dirk Lewke., et al, Thermal Laser Separation – A Novel Dicing Technology Fulfilling the Demands of 4H-SiC Volume Manufacturing, Materials Science Forum, 2015.
[50] J. LaDou, Printed circuit board industry, Int. J. Hyg. Environ.-Health 209 (2006) 211–219.
[51] Kulicke & Soffa, Dicing product, Hub Blades and Services for Advanced Material Applications, https://www.seas.upenn.edu/~nanosop/documents/dicing_blade_catalog.pdf.
[52] X.C. Wang and H.Y. Zheng, High quality laser cutting of electronic printed circuit board substrates, Circuit World, Volume 35, Number 4, 2009, 46 –55.
[53] Corporation., aluminium oxide, Sunda Optical Material,2022. https://www.sunda-optical.com.tw/products_detail/151.htm
[54] L. A. O. Araujo., et al, Precision dicing of hard materials with abrasive blade, Int J Adv Manuf Technol, 2016, 86: p2885–2894.
[55] X.C. Wang,. et al, High quality femtosecond laser cutting of alumina substrates, Optics and Lasers in Engineering 48, 2010, p657-663.
[56] J.P. Chu., et al, Thin film metallic glasses: Unique properties and potential applications, Thin Solid Films 520, 2012, p5097–5122.
[57] J.F. Lo ̈ffle, Bulk metallic glasses, Intermetallics 11, 2003, p529 – 540.
[58] Jinn P. Chu., et al, Non-stick syringe needles: Beneficial effects of thin film metallic glass coating, Scientific Reports 6:31847, 2016.
[59] Hae Won Yoon., et al., Preparation of Zr-Al-Mo-Cu Single Targets with Glass Forming Ability and Deposition of Thin Film Metallic Glass, Coatings, 10, 398, 2020.
[60] D.Sangid, M., The physics of fatigue crack initiation. International Journal of Fatigue, 2012. 57: p. 58-72.
[61] Schuh, C., T. Hufnagel, and U. Ramamurty, Mechanical behavior of amorphous alloys. Acta Materialia, 2007. 55(12): p. 4067-4109.
[62] Chang, C.H., et al., Fatigue property improvements of ZK60 magnesium alloy: Effects of thin film metallic glass. Thin Solid Films, 2016. 616: p. 431-436.
[63] Chu, J.P., et al., Coating needles with metallic glass to overcome fracture toughness and trauma: Analysis on porcine tissue and polyurethane rubber. Thin Solid Films, 2019. 688.
[64] Moreno-Bárcenas., et al., Diamond-Like Carbon Coating on Plasma Nitrided M2 Steel: effect of deposition parameters on adhesion properties.
[65] Magnetron sputtering: overview.
[66] Gudmundsson, J.T., et al., High power impulse magnetron sputtering discharge. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2012. 30(3).
[67] 張家豪,金屬玻璃鍍層用於提升鎂合金疲勞性質,降低高速鋼鑽頭鑽孔溫度及降低風 阻研究.2019.
[68] Shen, J., et al., Investigation on the edge chipping in ultrasonic assisted sawing of monocrystalline silicon. Micromachines (Basel), 2019. 10(9).
[69] Precision Processing Tool, Disco Corporation, 2022.
[70] https://www.dicing-grinding.com/services/dicing/
[71] Te-Jen Su., et al. Improvement of Wafer Saw Film Burr Issues, International Journal of Modeling and Optimization, Vol. 5, No. 5, October 2015.
[72] W. Mingge., et al. Effects of metal buffer layer for amorphous carbon film of 304 stainless steel bipolar plate, Thin Solid Films 616 (2016) 507–514.

無法下載圖示 全文公開日期 2032/09/21 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE