簡易檢索 / 詳目顯示

研究生: 阮黃光耀
NGUYEN - HUYNH QUANG DIEU
論文名稱: DMA-TRIS-NVP 矽水膠之製備及其在隱形眼鏡材料之應用
PREPARATION OF DMA-TRIS-NVP SILICONE HYDROGELS FOR CONTACT LENS MATERIAL
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 高震宇
Chen-Yu Kao
劉定宇
Ting-Yu Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 80
中文關鍵詞: DMATRISNVP矽水膠隱形眼鏡
外文關鍵詞: DMA, TRIS, NVP, silicone hydrogel, contact lens
相關次數: 點閱:403下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文以N,N-二甲基丙烯醯胺 (dimethylacrylamide, DMA), 甲基丙烯醯氧丙基三(三甲基矽氧烷基)矽烷 (tris-(trimethyl-silyl-propyl-methacrylate), TRIS),及N-乙烯基咯烷酮 (N-vinylpyrrolidone, NVP) 為單體,再加入PI1173光起始劑以及交聯劑二甲基丙烯酸乙二醇酯 (ethylene glycol dimethylacrylate, EGDMA),以UV起始法經由自由基共聚合製備DMA-TRIS-NVP矽水膠。 由實驗結果得知,通過調整親水性單體DMA, NVP 及疏水性單體TRIS的比率可改變此矽水膠的含水率與透氧率. 其含水率隨著NVP的增加而上升,而接觸角也因NVP的加入而降低,因而提高水膠的親水性,然而透氧率則相反降低。在機械強力及楊氏係數方面會隨著NVP的增加而有下降的趨勢。 DMA-TRIS-NVP矽水膠的透光率都在可見光範圍可達97%以上。而在蛋白質吸附試驗中,利用BCA蛋白質測定法來探討,結果顯示隨著NVP的含量增加,蛋白質吸附量會明顯上升。在細胞毒性方面,以ISO10993-5的判定上屬於0級,所以其細胞毒性極底。根據以上特性,未來可以利用此矽水膠來作為隱形眼鏡及眼科的材料。


A silicone hydrogel was synthesized through photoinitiated free radical polymerization process using dimethylacrylamide (DMA), tris-(trimethyl-silyl-propyl-methacrylate) (TRIS), N-vinylpyrrolidone (NVP), ethylene glycol dimethylacrylate (EGDMA) as crosslinker and PI1173 as photoinitiator. The equilibriumwater content (EWC) and oxygen permeability was adjustable by changing the ratio between hydrophiclic monomers DMA, NVP and hydrophilic monomer TRIS. The results indicated that higher NVP content led to a higher water content, lower contact angle, lower elastic modulus and higher protein adsorption. In term of oxygen permeability, at an NVP concentration of 25%, the silicone hydrogel sample exhibited a Dk value of 46 barrers. In addition, these silicone hydrogels were confirmed non-cytotoxic according to a in vitro L929 fibroblast assay. In summary, the results illustrated that the DMA-TRIS-NVP copolymer was a good candidate for contact lens material application due to high hydrophilicity, excellent optical transparency, improved oxygen permeability, good wettability and biocompatibility.

Table 2.1. FDA classification of soft contact lens materials 16 Table 3.1. Copolymerization formulations 32 Table 3.2. Dog-bone shape dimension for tensile strength measurement 35 Table 3.3. In vitro cell toxicity experiment set up 38 Table 3.4. Qualitative morphological grading of cytotoxicity of extracts is based on the standard of requirement of ISO 10995-5 39 Table 4.1. Gel fraction 40 Table 4.2. Characteristics of various silicone hydrogel contact venses and vonventional hydrogel contact lenses 63

[1] Zhao Z, Xie H, An S, Jiang Y. The relationship between oxygen permeability and phase separation morphology of the multicomponent silicone hydrogels. The journal of physical chemistry B. 2014;118(50):14640-7.
[2] Augst AD, Kong HJ, Mooney DJ. Alginate Hydrogels as Biomaterials. Macromolecular Bioscience. 2006;6(8):623-33.
[3] Mikos AG, Sarakinos G, Leite SM, Vacant JP, Langer R. Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials. 1993;14(5):323-30.
[4] Shoichet MS. Polymer Scaffolds for Biomaterials Applications. Macromolecules. 2010;43(2):581-91.
[5] Debord JD, Lyon LA. Thermoresponsive Photonic Crystals. The Journal of Physical Chemistry B. 2000;104(27):6327-31.
[6] Willis SL, Court JL, Redman RP, Wang J-H, Leppard SW, O’Byrne VJ, et al. A novel phosphorylcholine-coated contact lens for extended wear use. Biomaterials. 2001;22(24):3261-72.
[7] Zhao Z-b, An S-s, Xie H-j, Jiang Y. Copolymerization and properties of multicomponent crosslinked hydrogels. Chinese Journal of Polymer Science. 2015;33(1):173-83.
[8] Begley CG, Caffery B, Nichols KK, Chalmers R. Responses of Contact Lens Wearers to a Dry Eye Survey. Optometry & Vision Science. 2000;77(1):40-6.
[9] Richdale K, Sinnott LT, Skadahl E, Nichols JJ. Frequency of and Factors Associated With Contact Lens Dissatisfaction and Discontinuation. Cornea. 2007;26(2):168-74.
[10] Mandell RB, Farrell R. Corneal swelling at low atmospheric oxygen pressures. Investigative Ophthalmology & Visual Science. 1980;19(6):697-702.
[11] Hapnes R. Soft contact lenses worn at a simulated altitude of 18 000 feet. Acta Ophthalmologica. 1980;58(1):90-5.
[12] Clarke C. Contact lenses at high altitude: experience on Everest south-west face 1975. The British Journal of Ophthalmology. 1976;60(6):479-80.
[13] Nicolson PC. Continuous Wear Contact Lens Surface Chemistry and Wearability. Eye & Contact Lens. 2003;29(1):S30-S2.
[14] Compan V, Andrio A, Lopez-Alemany A, Riande E, Refojo MF. Oxygen permeability of hydrogel contact lenses with organosilicon moieties. Biomaterials. 2002;23(13):2767-72.
[15] Chekina NA, Pavlyuchenko VN, Danilichev VF, Ushakov NA, Novikov SA, Ivanchev SS. A new polymeric silicone hydrogel for medical applications: synthesis and properties. Polymers for Advanced Technologies. 2006;17(11-12):872-7.
[16] Friends GD, Kunzler JF, Ozark RM. Recent advances in the design of polymers for contact lenses. Macromolecular Symposia. 1995;98(1):619-31.
[17] Chaouk H, Wilkie JS, Meijs GF, Cheng HY. New porous perfluoropolyether membranes. Journal of Applied Polymer Science. 2001;80(10):1756-63.
[18] Lai Y-C. Novel polyurethane–silicone hydrogels. Journal of Applied Polymer Science. 1995;56(3):301-10.
[19] Ang JH, Efron N. Corneal hypoxia and hypercapnia during contact lens wear. Optometry and vision science : official publication of the American Academy of Optometry. 1990;67(7):512-21.
[20] Fonn, D D, K J, IA S. Benefits of Silicone Hydrogel Lenses. Contact Lens Spectrum. 2006.
[21] K C-O. Soft contact lenses and long term corneal hypoxia: What is changing with silicone hydrogel lens? Acta Clin Croat 2007;46(17):30.
[22] Begley CG, Caffery B, Nichols KK, Chalmers R. Responses of contact lens wearers to a dry eye survey. Optometry and vision science : official publication of the American Academy of Optometry. 2000;77(1):40-6.
[23] Paterson SM, Liu L, Brook MA, Sheardown H. Poly(ethylene glycol)-or silicone-modified hyaluronan for contact lens wetting agent applications. Journal of biomedical materials research Part A. 2015;103(8):2602-10.
[24] Lai Y-C. The role of bulky polysiloxanylalkyl methacrylates in polyurethane–polysiloxane hydrogels. Journal of Applied Polymer Science. 1996;60(8):1193-9.
[25] Pozuelo J, Compañ V, González-Méijome JM, González M, Mollá S. Oxygen and ionic transport in hydrogel and silicone-hydrogel contact lens materials: An experimental and theoretical study. Journal of Membrane Science. 2014;452:62-72.
[26] Wang JJ, Liu F. Simultaneous interpenetrating network silicone hydrogels prepared by free radical/cationic hybrid polymerization. Journal of Applied Polymer Science. 2013;127(3):2235-42.
[27] Mullarney MP, Seery TAP, Weiss RA. Drug diffusion in hydrophobically modified N,N-dimethylacrylamide hydrogels. Polymer. 2006;47(11):3845-55.
[28] Wang J, Li X. Preparation and characterization of interpenetrating polymer network silicone hydrogels with high oxygen permeability. Journal of Applied Polymer Science. 2010;116(5):2749-57.
[29] Li Y, Huang G, Zhang X, Li B, Chen Y, Lu T, et al. Magnetic Hydrogels and Their Potential Biomedical Applications. Advanced Functional Materials. 2013;23(6):660-72.
[30] Ahmed EM. Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research. 2015;6(2):105-21.
[31] Ullah F, Othman MBH, Javed F, Ahmad Z, Akil HM. Classification, processing and application of hydrogels: A review. Materials Science and Engineering: C. 2015;57:414-33.
[32] Wichterle O, Lim D. Hydrophilic Gels for Biological Use. Nature. 1960;185(4706):117-8.
[33] Dergunov SA, Mun GA. γ-irradiated chitosan-polyvinyl pyrrolidone hydrogels as pH-sensitive protein delivery system. Radiation Physics and Chemistry. 2009;78(1):65-8.
[34] Das N. A review on nature and preparation of hydrogel based on starting material. International Journal of Pharmacy and Pharmaceutical Sciences. 2013;5(4):55-8.
[35] Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews. 2001;53(3):321-39.
[36] Caló E, Khutoryanskiy VV. Biomedical applications of hydrogels: A review of patents and commercial products. European Polymer Journal. 2015;65:252-67.
[37] Cong H-P, Wang P, Yu S-H. Stretchable and Self-Healing Graphene Oxide–Polymer Composite Hydrogels: A Dual-Network Design. Chemistry of Materials. 2013;25(16):3357-62.
[38] Baroli B. Photopolymerization of biomaterials: issues and potentialities in drug delivery, tissue engineering, and cell encapsulation applications. Journal of Chemical Technology & Biotechnology. 2006;81(4):491-9.
[39] Garcia Y, Collighan R, Griffin M, Pandit A. Assessment of cell viability in a three-dimensional enzymatically cross-linked collagen scaffold. Journal of materials science Materials in medicine. 2007;18(10):1991-2001.
[40] Gupta P, Vermani K, Garg S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discovery Today. 2002;7(10):569-79.
[41] Iizawa T, Taketa H, Maruta M, Ishido T, Gotoh T, Sakohara S. Synthesis of porous poly(N-isopropylacrylamide) gel beads by sedimentation polymerization and their morphology. Journal of Applied Polymer Science. 2007;104(2):842-50.
[42] Lim J, Chouai A, Lo ST, Liu W, Sun X, Simanek EE. Design, synthesis, characterization, and biological evaluation of triazine dendrimers bearing paclitaxel using ester and ester/disulfide linkages. Bioconjugate chemistry. 2009;20(11):2154-61.
[43] Gong C, Shi S, Dong P, Kan B, Gou M, Wang X, et al. Synthesis and characterization of PEG-PCL-PEG thermosensitive hydrogel. International Journal of Pharmaceutics. 2009;365(1–2):89-99.
[44] Heiting G. When contact lenses were invented. http://wwwallaboutvisioncom/contacts/faq/when-inventedhtm. 2010; [Accessed 7st May 2016].
[45] Nishimura S. Thesis: The investigation of the thermal effect of contact lens wear, Cardiff University, UK. 2014.
[46] Nichols JJ. Contact Lens Spectrum. 2013;28:24-9.
[47] Schifrin LG. The contact lens industry : structure, competition, and public policy. In: Rich WJ, editor. Washington, D.C. :: Congress of the U.S., Office of Technology Assessment :; 1984. p. 15-20.
[48] Doughman DJ, Massare JS. Defining contact lens terminology. The CLAO journal : official publication of the Contact Lens Association of Ophthalmologists, Inc. 1996;22(4):228-9.
[49] Maldonado-Codina, Carole, Efron N. Hydrogel lenses - materials and manufacture. A review. Optometry in Practice. 2003;4(2):101 - 15.
[50] Maldonado-Codina C. Chapter 5, Solf lens materials, in: Efron, N. (Ed.), Contact Lens Practice, 3rd Ed. . 2010:67-83.
[51] Refojo MF, Holly FJ. Tear Protein Adsorption on Hydrogels: A Possible Cause of Contact Lens Allergy. Eye & Contact Lens. 1977;3(1):23-36.
[52] MF R. The CLAO Guide to Basic Science and Clinical Practice. 1991;9(New York: Grune and Stratton):1-4.
[53] Efron N. Contact lens Complications. Oxford: Butterworth-Heinemann-Optician. 1999.
[54] Fatt I. New physiological paradigms to assess the effect of lens oxygen transmissibility on corneal health. The CLAO journal : official publication of the Contact Lens Association of Ophthalmologists, Inc. 1996;22(1):25-9.
[55] Efron N. Contact lenses A-Z. 2002:124-6.
[56] Efron N. Contact lenses A-Z / Nathan Efron. Oxford: Butterworth-Heinemann; 2002.
[57] Jones L, Senchyna M, Glasier MA, Schickler J, Forbes I, Louie D, et al. Lysozyme and lipid deposition on silicone hydrogel contact lens materials. Eye Contact Lens. 2003;29(1 Suppl):S75-9; discussion S83-4, S192-4.
[58] Luensmann D, Jones L. Albumin adsorption to contact lens materials: a review. Contact lens & anterior eye : the journal of the British Contact Lens Association. 2008;31(4):179-87.
[59] Bohnert JL, Horbett TA, Ratner BD, Royce FH. Adsorption of proteins from artificial tear solutions to contact lens materials. Invest Ophthalmol Vis Sci. 1988;29(3):362-73.
[60] Senchyna M, Jones L, Louie D, May C, Forbes I, Glasier MA. Quantitative and conformational characterization of lysozyme deposited on balafilcon and etafilcon contact lens materials. Current eye research. 2004;28(1):25-36.
[61] Valdebenito A, Encinas MV. Effect of solvent on the free radical polymerization of N,N-dimethylacrylamide. Polymer International. 2010;59(9):1246-51.
[62] Parambil, Ajithkumar Manayan, Yashoda Malagar Puttaiahgowda, Shankarappa P. Copolymerization of N-Vinyl pyrrolidone with methyl methacrylate by Ti (III)-DMG redox initiator. Turkish Journal of Chemistry. 2012;36(3):397-409.
[63] Tighe BJ. A decade of silicone hydrogel development: surface properties, mechanical properties, and ocular compatibility. Eye Contact Lens. 2013;39(1):4-12.
[64] BJ T. Soft lens materials. In: Efron N, editor. Contact lens practice. Oxford: Butterworth-Heinemann. 2002:71-84.
[65] Kastl PR, Refojo MF. Guide to Basic Science and Clinical Practice 1984:6.1-6.23.
[66] Bracco, Gianangelo, Holst B. Surface Science Techniques. Springer Series in Surface Sciences. 2013;51:3-34.
[67] Yuan Y, Lee TR. Contact Angle and Wetting Properties. In: Bracco G, Holst B, editors. Surface Science Techniques. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013. p. 3-34.
[68] Giraldez MJ, Yebra-Pimentel E. Hydrogel Contact Lenses Surface Roughness and Bacterial Adhesion. 2012.
[69] Austin DTR, Hills BP. Two-dimensional NMR relaxation study of the pore structure in silicone hydrogel contact lenses. Applied Magnetic Resonance. 2009;35(4):581-91.
[70] Nichols JJ, Mitchell GL, Good GW. The reliability and validity of hand-held refractometry water content measures of hydrogel lenses. Optometry and vision science : official publication of the American Academy of Optometry. 2003;80(6):447-53.
[71] Tranoudis I, Efron N. Water properties of soft contact lens materials. Contact Lens and Anterior Eye. 2004;27(4):193-208.
[72] Tranoudis I, Efron N. Water properties of soft contact lens materials. Contact lens & anterior eye : the journal of the British Contact Lens Association. 2004;27(4):193-208.
[73] Brennan NA, N E. Hydrogel lens dehydration: a material-dependent phenomenon. Contact Lens Forum. 1987;12(4):28-9.
[74] Mousa GY, Callender MG, Sivak JG, DJ E. The effect of index hydration characteristics of hydrogel lenses on the refractive index. Int Contact Lens Clin. 1983;10:31-7.
[75] Patel S. Effects of lens dehydration on back vertex power. Apical height and lens mass of high water content hydrogel lenses. Int Contact Lens Clin. 1983;10(38).
[76] French K. Contact lens material properties Part 3 - Oxygen performance. Optician. 2005.
[77] Dillehay SM. Does the level of available oxygen impact comfort in contact lens wear?: A review of the literature. Eye Contact Lens. 2007;33(3):148-55.
[78] Goda T, Ishihara K. Soft contact lens biomaterials from bioinspired phospholipid polymers. Expert review of medical devices. 2006;3(2):167-74.
[79] Barrie JA, Munday K. Gas transport in heterogeneous polymer blends. Journal of Membrane Science. 1983;13(2):175-95.
[80] Barnabeo AE, Creasy WS, Robeson LM. Gas permeability characteristics of nitrile-containing block and random copolymers. Journal of Polymer Science: Polymer Chemistry Edition. 1975;13(9):1979-86.
[81] Keun Lee Y, Tae-Moon T, Doo SL, Sung CK. Cationic/anionic interpenetrating polymer network membranes for the pervaporation of ethanol-water mixture. Journal of Membrane Science. 1990;52(2):157-72.
[82] Doo SL, Dae SJ, Tae HK, Sung CK. Gas transport in polyurethane-polystyrene interpenetrating polymer network membranes. I. Effect of synthesis temperature and molecular structure variation. Journal of Membrane Science. 1991;60(2):233-52.
[83] Wang J, Fonn D, Simpson TL, Sorbara L, Kort R, Jones L. Topographical thickness of the epithelium and total cornea after overnight wear of reverse-geometry rigid contact lenses for myopia reduction. Invest Ophthalmol Vis Sci. 2003;44(11):4742-6.
[84] Refojo MF, Leong F-L. Water-dissolved-oxygen permeability coefficients of hydrogel contact lenses and boundary layer effects. Journal of Membrane Science. 1978;4:415-26.
[85] Sweeney D, du Toit R, L K. Clinical performance of silicone hydrogel lenses. in Silicone hydrogels: Continuous wear contact lenses. Butterworth-Heinemann. 2004:164-216.
[86] Guillon M, Maissa C. Use of silicone hydrogel material for daily wear. Contact lens & anterior eye : the journal of the British Contact Lens Association. 2007;30(1):5-10; quiz 71.
[87] Efron N, Morgan PB, Cameron ID, Brennan NA, Goodwin M. Oxygen Permeability and Water Content of Silicone Hydrogel Contact Lens Materials. Optometry & Vision Science. 2007;84(4):E328-E37.
[88] B T. Silicone hydrogels: Structure, properties and behaviour. Silicone Hydrogels: Continuous Wear Contact Lenses. 2004;Oxford, Butterworth-Heinemann:1-27.
[89] Nicolson PC, Vogt J. Soft contact lens polymers: an evolution. Biomaterials. 2001;22(24):3273-83.
[90] Modjarrad, Ebnesajjad. Handbook of Polymer Applications in Medicine and Medical Devices, 1st Edition. 2013:59.
[91] Nicolson P, Baron R, Chabrecek P, al e. Extended wear ophthalmic lens. CIBA Vision; CSIRO, US Patent # 5,760,100. 1998.
[92] Bauman RE, Hagmann P, Pruitt JD, al e. Silicone hydrogel lenses with nano-textured surfaces. Patent US2012/0314185 A1, USA. 2012.
[93] White CJ, McBride MK, Pate KM, Tieppo A, Byrne ME. Extended release of high molecular weight hydroxypropyl methylcellulose from molecularly imprinted, extended wear silicone hydrogel contact lenses. Biomaterials. 2011;32(24):5698-705.
[94] Guidi G, Korogiannaki M, Sheardown H. Modification of timolol release from silicone hydrogel model contact lens materials using hyaluronic acid. Eye Contact Lens. 2014;40(5):269-76.
[95] Keir N, Jones L. Wettability and silicone hydrogel lenses: a review. Eye Contact Lens. 2013;39(1):100-8.
[96] Holly FJ. Tear film physiology and contact lens wear. I. Pertinent aspects of tear film physiology. American journal of optometry and physiological optics. 1981;58(4):324-30.
[97] Read ML, Morgan PB, Maldonado-Codina C. Measurement errors related to contact angle analysis of hydrogel and silicone hydrogel contact lenses. Journal of biomedical materials research Part B, Applied biomaterials. 2009;91(2):662-8.
[98] Abbasi F, Mirzadeh H, Simjoo M. Hydrophilic interpenetrating polymer networks of poly(dimethyl siloxane) (PDMS) as biomaterial for cochlear implants. Journal of biomaterials science Polymer edition. 2006;17(3):341-55.
[99] van Beek M, Weeks A, Jones L, Sheardown H. Immobilized hyaluronic acid containing model silicone hydrogels reduce protein adsorption. Journal of biomaterials science Polymer edition. 2008;19(11):1425-36.
[100] Hsieh T-T, Hsieh K-H, Simon GP, Tiu C, Hsu H-P. Effect of crosslinking density on the physical properties of interpenetrating polymer networks of polyurethane and 2-hydroxyethyl methacrylate-teminated polyurethane. Journal of Polymer Research. 1998;5(3):153-62.
[101] Lin CH, Yeh YH, Lin WC, Yang MC. Novel silicone hydrogel based on PDMS and PEGMA for contact lens application. Colloids and surfaces B, Biointerfaces. 2014;123:986-94.
[102] K. F. Lens Material Properties. Part 1 - Wettability. The Optician. 2005:20-6.
[103] Jones LW, Subbaraman LN, Rogers R, K. D. Surface treatment, wetting, and modulus of silicone hydrogels. Optician. 2006;232:28-34.
[104] Tranoudis I, Efron N. Tensile properties of soft contact lens materials. Contact Lens and Anterior Eye. 2004;27(4):177-91.
[105] Steffen R, C S. A next generation silicone hydrogel lens for daily wear. Part 1 - Material properties. Optician 2004;227(5954):23-5.
[106] Dumbleton K. Noninflammatory silicone hydrogel contact lens complications. Eye Contact Lens. 2003;29(1 Suppl):S186-9; discussion S90-1, S92-4.
[107] Horst CR, Brodland B, Jones LW, Brodland GW. Measuring the modulus of silicone hydrogel contact lenses. Optometry and vision science : official publication of the American Academy of Optometry. 2012;89(10):1468-76.
[108] Peniche C, Zaldívar D, Pazos M, Páz S, Bulay A, Román JS. Study of the thermal degradation of poly(N-vinyl-2-pyrrolidone) by thermogravimetry–FTIR. Journal of Applied Polymer Science. 1993;50(3):485-93.
[109] Bianco G, Soldi MS, Pinheiro EA, Pires ATN, Gehlen MH, Soldi V. Thermal stability of poly(N-vinyl-2-pyrrolidone-co-methacrylic acid) copolymers in inert atmosphere. Polymer Degradation and Stability. 2003;80(3):567-74.
[110] Bogatyrev VM, Borisenko NV, Pokrovskii VA. Thermal Degradation of Polyvinylpyrrolidone on the Surface of Pyrogenic Silica. Russian Journal of Applied Chemistry. 2001;74(5):839-44.
[111] Xu L, Che L, Zheng J, Huang G, Wu X, Chen P, et al. Synthesis and thermal degradation property study of N-vinylpyrrolidone and acrylamide copolymer. RSC Advances. 2014;4(63):33269-78.
[112] Rao V, Latha P, Ashokan PV, Shridhar MH. Thermal Degradation of Poly(N-vinylpyrrolidone)-Poly(vinyl alcohol) Blends. Polym J. 1999;31(10):887-9.
[113] Giraldez MJ, Serra C, Lira M, Real Oliveira ME, Yebra-Pimentel E. Soft contact lens surface profile by atomic force microscopy. Optometry and vision science : official publication of the American Academy of Optometry. 2010;87(7):E475-81.
[114] Baguet J, Sommer F, Claudon-Eyl V, Duc TM. Characterization of lacrymal component accumulation on worn soft contact lens surfaces by atomic force microscopy. Biomaterials. 1995;16(1):3-9.
[115] Vermeltfoort PB, van der Mei HC, Busscher HJ, Hooymans JM, Bruinsma GM. Physicochemical factors influencing bacterial transfer from contact lenses to surfaces with different roughness and wettability. Journal of biomedical materials research Part B, Applied biomaterials. 2004;71(2):336-42.
[116] Van Beek M, Jones L, Sheardown H. Hyaluronic acid containing hydrogels for the reduction of protein adsorption. Biomaterials. 2008;29(7):780-9.
[117] Baguet J, Sommer F, Duc TM. Imaging surfaces of hydrophilic contact lenses with the atomic force microscope. Biomaterials. 1993;14(4):279-84.
[118] L S-F. Improving ocular health and comfort with silicone hydrogel contact lenses: lens distinctions. Contact lens spectrum. 2007.
[119] Lira M, Santos L, Azeredo J, Yebra-Pimentel E, Oliveira ME. Comparative study of silicone-hydrogel contact lenses surfaces before and after wear using atomic force microscopy. Journal of biomedical materials research Part B, Applied biomaterials. 2008;85(2):361-7.
[120] Bennett JM. Recent developments in surface roughness characterization. Measurement Science and Technology. 1992;3(12):1119.
[121] Green-Church KB, Nichols KK, Kleinholz NM, Zhang L, Nichols JJ. Investigation of the human tear film proteome using multiple proteomic approaches. Molecular Vision. 2008;14:456-70.
[122] Luensmann D, Jones L. Protein deposition on contact lenses: the past, the present, and the future. Contact lens & anterior eye : the journal of the British Contact Lens Association. 2012;35(2):53-64.
[123] Garrett Q, Laycock B, Garrett RW. Hydrogel lens monomer constituents modulate protein sorption. Invest Ophthalmol Vis Sci. 2000;41(7):1687-95.
[124] Wang J-j, Li X-s. Improved oxygen permeability and mechanical strength of silicone hydrogels with interpenetrating network structure. Chinese Journal of Polymer Science. 2010;28(6):849-57.
[125] Holden BA, Mertz GW. Critical oxygen levels to avoid corneal edema for daily and extended wear contact lenses. Invest Ophthalmol Vis Sci. 1984;25(10):1161-7.
[126] Harvitt DM, Bonanno JA. Re-evaluation of the oxygen diffusion model for predicting minimum contact lens Dk/t values needed to avoid corneal anoxia. Optometry and vision science : official publication of the American Academy of Optometry. 1999;76(10):712-9.
[127] Brennan NA, Efron N, Bruce AS, Duldig DI, Russo NJ. Dehydration of hydrogel lenses: environmental influences during normal wear. American journal of optometry and physiological optics. 1988;65(4):277-81.
[128] Efron N, Young G. Dehydration of hydrogel contact lenses in vitro and in vivo. Ophthalmic and Physiological Optics. 1988;8(3):253-6.
[129] Efron N, Morgan PB. Hydrogel contact lens dehydration and oxygen transmissibility. The CLAO journal : official publication of the Contact Lens Association of Ophthalmologists, Inc. 1999;25(3):148-51.
[130] Jones L, May C, Nazar L, Simpson T. In vitro evaluation of the dehydration characteristics of silicone hydrogel and conventional hydrogel contact lens materials. Contact lens & anterior eye : the journal of the British Contact Lens Association. 2002;25(3):147-56.
[131] Gonzalez-Meijome JM, Lopez-Alemany A, Almeida JB, Parafita MA, Refojo MF. Qualitative and quantitative characterization of the in vitro dehydration process of hydrogel contact lenses. Journal of biomedical materials research Part B, Applied biomaterials. 2007;83(2):512-26.

無法下載圖示 全文公開日期 2021/05/31 (校內網路)
全文公開日期 2026/05/31 (校外網路)
全文公開日期 2026/05/31 (國家圖書館:臺灣博碩士論文系統)
QR CODE