簡易檢索 / 詳目顯示

研究生: 林建宏
Chien-hong Lin
論文名稱: 聚二甲基矽氧烷混成水膠薄膜之改質及其眼科性質之探討
Modification of polydimethylsiloxane hybrid hydrogel membranes for ophthalmic properties
指導教授: 楊銘乾
Ming-chien Yang
口試委員: 鍾竺均
Ying-Chien Chung
張豐志
Feng-chih Chang
許應舉
Ying-gev, Hsu
王大銘
Da-Ming Wang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 161
中文關鍵詞: PDMS預聚物幾丁聚醣透明質酸F127PEGMA親水性蛋白質吸附透氧性無毒性矽水膠眼科材料
外文關鍵詞: PDMS macromer, non-cytotoxic
相關次數: 點閱:426下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用PDMS-diol為軟鏈段,IPDI為硬鏈段與HEMA為鏈延長劑來合成聚矽氧烷凝膠 (PDMS-HEMA) 作為基材。對於此PDMS-HEMA基材,本論文以三種方式加以改質,以作為眼科材料。第一種方式是利用層接式自我組裝方法形成多層聚集來進行PDMS-HEMA的表面改質。第二種方式,則利用Pluronic F127以混摻的方式與PDMS-HEMA形成混摻水膠。第三種方式,係利用PEGMA以共聚合的方式與PDMS-HEMA形成共聚合水膠。
    在本論文的第一部分,將PDMS-HEMA,利用氧電漿活化表面,進行丙烯酸接枝,於膜表面產生-COO-基團,然後利用幾丁聚醣(chitosan,CS)與透明質酸 (hyaluronic acid,HA)以層接式自我組裝形成多層聚集結構。由AFM觀察可知聚電解質多層結構之PDMS-HEMA薄膜粗糙度會些微上升。由染料確認可得知幾丁聚醣與透明質酸接枝量也隨固化層增加有線性增加趨勢。接觸角會因透明質酸接枝密度的增加而降低,如此更使親水性提高。由於幾丁聚醣與透明質酸量增加更降低PDMS-HEMA薄膜之蛋白質吸附。此外,在含水率、透氧率與透光率方面,改質前後的PDMS-HEMA無明顯變化。
    第二部分,利用Pluronic F127以混摻的方式與PDMS-HEMA形成混摻水膠(PDMS-F127)。由實驗結果可知,其含水率隨著Pluronic F127增加而上升,而接觸角也因Pluronic F127的加入而降低,因而提高水膠的親水性,然而透氧率(oxygen permeability,Dk )則相對地降低,但降低的量並不大,而透光率也有些微地降低。在機械強力(mechanical strength)及楊氏係數(Young’s modulus)方面會隨著Pluronic F127的增加而有下降的趨勢。而在蛋白質吸附試驗中,我們利用BCA蛋白質測定方法來探討,結果顯示Pluronic F127上由於立體結構的影響而能抑制lysozyme的吸附。在細胞毒性方面,以ISO10993-5的判定上屬於0-1級,所以其細胞毒性甚低。
    第三部分,PEGMA以共聚合的方式與PDMS-HEMA形成共聚合水膠(PDMS-PEGMA),由結果得知,在PDMS-PEGMA矽水膠中,PEGMA的含量愈多會使得接觸角角度愈低、含水率愈高、葡萄糖滲透量也會愈高。楊氏係數會隨著PEGMA的增加而減少。然而透氧率則相對地降低,但降低的量並不大,而透光率也有些微地降低。在蛋白質吸附試驗中,PEGMA能有效的抑制lysozome的吸附。在L929纖維母細胞毒性測試,可得知PDMS-PEGMA並無毒性。
    綜合以上結果,PDMS-HEMA經由表面、混摻、共聚合的方式改質後的矽水膠,具有優異的透光性、透氧性、親水性、抗蛋白且無細胞毒性,對於作為眼科材料有相當大的潛力。


    A novel polydimethylsiloxane (PDMS) based hydrogel was synthesized for ophthalmical applications. This novel hydrogel was consisting of soft segment of poly(dimethylsiloxane) dialkanol and hard segment of isophorone diisocyanate (IPDI). In addition, 2-hydroxyethyl methacrylate (HEMA) was added as the chain-extender to form UV curable silicone marcomer. This PDMS-HEMA macromer was subject to three kinds of modifications.
    In the first part, the surface of PDMS-HEMA gel membrane was treated with oxygen plasma, followed by graft-polymerization of acrylic acid (AA), Subsequently, chitosan (CS) (as positively charged agent) and hyaluronic acid (HA) (as negatively charged agent) were alternatively deposited onto the carboxylic PDMS-HEMA hydrogels in a layer-by-layer assembly manner, thereby constructing polyelectrolyte complex (PEC) multilayers. The results from AFM show that the surface roughness changed little with the deposition of PEC layers. The hydrophilicity was improved with the increase of the number of PEC layers. The adsorption amount of protein (lysozyme) decreased with the number of PEC layers. In addition, the oxygen permeability (Dk) and the optical transmittance were not significantly affected by the surface modification. Furthermore, these hydrogel membranes were non-cytotoxic through in vitro L929 fibroblasts assay.
    In the second part, the PDMS-HEMA marcomer was blended with Pluronic F127 triblock copolymer. The results show that the increase in Pluronic F127 content led to the decrease of water contact angle and the increase of water content the blend hydrogels. Young’s modulus also decreased with the increase of Pluronic F127 content, while surface roughness was not significantly affected. When the Pluronic F127 content reached 4%, the apparent protein adsorption amount decreased to about 60% of that of PDMS-HEMA control. Thus the PDMS-F127 hydrogel membrane had an excellent ability to resist protein adsorption. Additionally, the oxygen permeability (Dk) would decrease by 24%, comparing with PDMS-HEMA control. Furthermore, these hydrogel were non-cytotoxic through in vitro L929 fibroblasts proliferation assay. Overall results demonstrated that the PDMS-F127 blending hydrogel provided silicone hydrogel materials not only having relatively high oxygen permeability and a relatively low modulus, but also enhancing hydrophilicity and anti-protein adsorption.
    In the last part, PDMS-HEMA was reacted with PEGMA under UV-photo initiation, resulting a copolymer (PDMS-PEGMA). The results showed that higher PEGMA content led to lower water contact angle, higher water content and higher glucose permeability for these silicone hydrogels. Young’s modulus also decreased with the increase of PEGMA content. At a PEGMA content of 20%, the adsorption of lysozyme decreased to 23% of that of the PDMS-HEMA control. This indicated that the PDMS-PEGMA hydrogels exhibited an ability to resist protein adsorption. In addition, the oxygen permeability (Dk) would remain 74% of that of the PDMS-HEMA control. Furthermore, these hydrogels were non-cytotoxic through in vitro L929 fibroblasts assay. Overall results demonstrated that the PDMS-PEGMA hydrogels exhibited not only relatively high oxygen permeability and a relatively optical transparency, but also hydrophilicity and anti-protein adsorption, therefore would be applicable as ophthalmic material.
    Overall results demonstrated that such an easy processing and rapid method should have good potential for modification of PDMS-HEMA in the application of ophthalmic material with biocompatibility, cytocompatibility, and hydrophilicity.

    目錄 中文摘要 I 英文摘要 III 誌謝 III 目錄 IV 圖索引 VI 表索引 VII 第一章 緒論 1 1-1 研究背景 1 1-2 研究目的 3 第二章 文獻回顧 5 2-1 水膠的定義 5 2-2 水膠之分類 6 2-3 功能性水膠 7 2-4 水膠合成的方式 8 2-5 隱形眼鏡的歷史 11 2-6 隱形眼鏡的種類 12 2-7 隱形眼鏡的材料 14 2-8 隱形眼鏡材料的特殊性質 17 2-9 隱形眼鏡的蛋白質吸附 21 2-10 高分子材料表面改質 23 2-11 層接式自我組裝 26 2-12 幾丁聚醣(Chitosan) 27 2-13 透明質酸(hyaluronic acid) 28 2-14 反應型矽酮寡聚物 (Hydroxyl-terminated polydimethylsiloxane,PDMS-diol) 29 2-15 異佛爾酮二異氰酸酯(Isophorone diisocyanate,IPDI) 30 2-16 紫外光硬化交聯原理 31 第三章 實驗材料與方法 33 3-1-1 實驗項目流程圖(第一部分) 33 3-1-2 實驗項目流程圖(第二部分) 34 3-1-3 實驗項目流程圖(第三部分) 35 3-2-1 實驗項目流程圖(第一部分) 36 3-2-2 實驗項目流程圖(第二部分) 37 3-2-3 實驗項目流程圖(第三部分) 38 3-3 實驗材料 39 3-4 實驗設備 41 3-5-1 實驗步驟(第一部分) 42 3-5-2 實驗步驟(第二部分) 43 3-5-3 實驗步驟(第三部分) 44 3-6 平衡含水量(Equilibrium water content)的測試 46 3-7 UV可見光的測定 46 3-8 熱重分析(Thermogravimetric Analysis) 46 3-9 FTIR之光譜鑑定 47 3-10 透氧係數測定 47 3-11 接觸角測試(Contact angle measurement) 48 3-12 掃描式電子顯微鏡(SEM) 49 3-13 DPPH過氧化基分析 49 3-14 化學分析電子譜(XPS) 50 3-15 硫酸根(sulfate)接枝率的染色測驗 50 3-16 胺基(amino)接枝率的染色測驗 50 3-17 強力試驗 51 3-18 原子力顯微鏡(AFM) 52 3-19 蛋白質吸附實驗 53 3-20 細胞毒性 54 3-21 細胞增生 57 第四章 結果與討論 59 4-1 第一部分 PDMS-PU-HEMA水膠薄膜之表面改質 59 4-1-1 氧電漿處理(O2-plasma treatment) 59 4-1-2 接枝密度的測量 62 4-1-3 AFM原子力學顯微鏡 64 4-1-4 接觸角(contact angle) 67 4-1-5 含水率與透氧量 69 4-1-6 透光率測試 72 4-1-7 蛋白質吸附 74 4-1-8 細胞毒性 76 4-1-9 細胞增生性 78 4-2 第二部分 PDMS-PU-F127混摻水膠 80 4-2-1 PDMS-PU-F127混摻水膠之合成 80 4-2-2 FTIR官能基分析 82 4-2-3 TGA熱重量分析 84 4-2-4 機械強度 86 4-2-5 透光率測試 89 4-2-6 含水率測試 91 4-2-7 透氧率測試 93 4-2-8 AFM表面粗糙度 95 4-2-9 接觸角測試 97 4-2-10 蛋白質吸附 99 4-2-11 細胞毒性 101 4-2-12 細胞增生性 103 4-3 第三部分 PDMS-PU-PEGMA共聚合水膠 105 4-3-1 PDMS-PU-F127混摻水膠之合成 105 4-3-2 FTIR官能基分析 106 4-3-3 TGA熱重量分析 109 4-3-4 機械強度 111 4-3-5 透光率測試 114 4-3-6 含水率測試 116 4-3-7 透氧率測試 118 4-3-8 AFM表面粗糙度 123 4-3-9 接觸角測試 126 4-3-10 葡萄糖滲透 128 4-3-10 蛋白質吸附 130 4-3-11 細胞毒性 132 4-3-12 細胞增生性 134 第五章 結論 136 第六章 參考文獻 139 作者簡介 144 圖索引 Figure 2-1 水膠交鏈方式 6 Figure 2-2 水膠製備方式 10 Figure 2-3 聚甲基丙烯酸甲酯結構 15 Figure 2-4 PHEMA之結構 15 Figure 2-5 水膠之水合作用 17 Figure 2-6 淚液沉澱物與鏡片之作用 18 Figure 2-7 淚液膜之位置 19 Figure 2-8 層接式自我組裝原理 17 Figure 2-9 幾丁聚醣之結構式 20 Figure 2-10 透明質酸之結構式 21 Figure 2-11 IPDI結構式 25 Figure 2-12 PDMS-diol結構式 30 Figure 2-13 光起始劑衍生物 30 Figure 3-1 接觸角之原理圖 48 Figure 3-2 DPPH與過氧化物反應式 49 Figure 3-3 BCA測試方法之步驟 53 Figure 4-1-1 過氧化物密度與氧電漿處理時間之關係 60 Figure 4-1-2 過氧化物密度與丙烯酸接枝密度之關係 61 Figure 4-1-3 AFM表面結構圖(A) PDMS-PU (B) PDMS-PU-(CS-HA)1 (C) PDMS-PU-(CS-HA)3 (D) PDMS-PU-(CS-HA)5 65 Figure 4-1-4 PDMS-PU水膠改質前後之表面粗糙度值 66 Figure 4-1-5 PDMS-PU水膠改質前後之接觸角測試 68 Figure 4-1-6 PDMS-PU水膠改質前後之含水率測試 70 Figure 4-1-7 PDMS-PU水膠改質前後之透氧量測試 71 Figure 4-1-8 PDMS-PU水膠改質前後之透光率測試 73 Figure 4-1-9 PDMS-PU水膠改質前後之蛋白質吸附 75 Figure 4-1-10 細胞毒性測試:(A)試劑對照組(Blank)、(B) PDMS-PU、(C) PDMS-PU-(CS-HA)1、(D) PDMS-PU-(CS-HA)5 77 Figure 4-1-11 PDMS-PU水膠改質前後之細胞增生性 79 Figure 4-2-1 PDMS-PU-F127水膠合成之FTIR分析圖 83 Figure 4-2-2 PDMS-PU-F127水膠之TGA熱分析圖 85 Figure 4-2-3 PDMS-PU-F127水膠之應力應變圖 87 Figure 4-2-4 PDMS-PU-F127水膠之最大應力及楊氏係數 88 Figure 4-2-5 PDMS-PU-F127水膠之透光度 90 Figure 4-2-6 PDMS-PU-F127水膠之含水率 92 Figure 4-2-7 PDMS-PU-F127之透氧率(Dk) 94 Figure 4-2-8 AFM表面結構圖(A) 0% F127 (B) 1% F127 (C) 4% F127 (D)水膠之表面粗糙度值 96 Figure 4-2-9 PDMS-PU-F127之接觸角測試 98 Figure 4-2-10 PDMS-PU-F127水膠之蛋白質吸附 100 Figure 4-2-11 (A)試劑對照組(Blank)、(B) 0% F127、(C) 1% F127、(D) 4% F127 102 Figure 4-2-12 PDMS-PU-F127水膠之細胞增生性 104 Figure 4-3-1 PDMS-PU-PEGMA水膠合成之FTIR分析圖 107 Figure 4-3-2 不同PEGMA比例之水膠之FTIR分析圖 108 Figure 4-3-3 PDMS-PU-PEGMA水膠之TGA熱分析圖 110 Figure 4-3-4 PDMS-PU-PEGMA水膠之應力應變圖 112 Figure 4-3-5 PDMS-PU-PEGMA水膠之最大應力及楊氏係數 113 Figure 4-3-6 PDMS-PU-PEGMA水膠之透光度 115 Figure 4-3-7 PDMS-PU-PEGMA水膠之影像 115 Figure 4-3-8 PDMS-PU-PEGMA水膠之含水率 117 Figure 4-3-9 PDMS-PU-PEGMA之透氧率(Dk) 119 Figure 4-3-10 AFM表面結構圖(A)P0(B)P1(C)P2(D)P3 124 Figure 4-3-11 PDMS-PU-PEGMA水膠之表面粗糙度值 125 Figure 4-3-12 PDMS-PU-PEGMA之接觸角測試 127 Figure 4-3-13 PDMS-PU-PEGMA之葡萄糖滲透量 129 Figure 4-3-14 PDMS-PU-PEGMA水膠之蛋白質吸附 131 Figure 4-3-15 細胞毒性測試:(A)試劑對照組(Blank)、(B) P0、(C) P1、(D) P3 133 Figure 4-3-16 PDMS-PU-PEGMA水膠之細胞增生性 135 表索引 Table 2-1 淚液膜(tear film)之組成與濃度 22 Table 2-2 不同表面改質方式之比較 25 Table 3-1 PDMS-PU/PEGMA水膠薄膜之比例 45 Table 3-2 PDMS-PU/F127水膠薄膜之比例 45 Table 3-3 主要的官能基吸收峰位置表 47 Table 4-1-1 PDMS-PU水膠表面聚電解質層之接枝密度 63 Table 4-2-1 PDMS-PU-F127混摻水膠之組成比例與產率 81 Table 4-3-1 PDMS-PU-PEGMA水膠之組成比例與產率 105 Table 4-3-2 PDMS-PU-PEGMA水膠與市面上隱形眼鏡之比較 122

    [1] 許瓊文,”嬌生攻下五成眼鏡族市場的秘密”,今周刊,期518,pp.112-113,2006。
    [2] 吳志凌,”隱形眼鏡自動光學檢測系統之設計與開發”,碩士論文(2007)。
    [3] Ratner B. D. and Hoffman.A. S., “Synthetic hydrogel for biomedical application”, ACS Symposium Ser., 31, 1 (1976).
    [4] Barenberg S. A., “Abridgel Report of the Committee to Survey the Needs and Opportunities for the Biomaterials Industry”, J. Biomed. Mater. Res., 22, 1267 (1988).
    [5] Hoffman A. S., “Hydrogels for biomedical applications”, Advanced Drug Reviews 43, 3-12 (2002).
    [6] Wichterle O. and Lim. D., “Hydrophilic gels for biological use”, Nature, 185, 117 (1960).
    [7] Peppas N. A. (Ed.), “Hydrogels in medicine and pharmacy”, Vol. 1 CRC Press, (1988).
    [8] 陳進富,淺談水膠在生醫之應用,化工科技與商情,2002, V38
    [9] http://www.chemnet.com.tw/magazin/200211/index9.htm
    [10] O. Wichterle, D. Lim, Hydrophilic gels in biologic use, Nature 1960,185, 117.
    [11] Kuijpers A. J., Engbers G. H. M., Meyvis T. K. L., De Smedt S. C., Demeester, J. Krijgsveld, Zaat S. A. J., Dankert J., Feijen J., Combined gleatin-condroitin sulfate hydrogels for controlled release of cationic antibacterial proteins, Macromolecules 2000, 33, 3705-3713.
    [12] Peppas N. A., Benner R. E., Proposed method of intracordal injectionand gelation of poly(vinyl alcohol) solution in vocal cords: polymer consideration, Biomaterials1980, 1, 158-162
    [13] Gombotz W.R., Wee S.F., Protein release from alginate matrices, Adv. Drug Deliv. Rev. 1991, 31, 267-285.
    [14] Yokoyama F., Masada I., Shimamura K., Ikawa T., Monobe K., Morphology and structure of highly elastic poly(vinyl alcohol) hydrogel prepared by repeated freezing-and-melting, Colloid Polym. Sci. 1986,264, 595-601.
    [15] Lim D. W., Park T.G., Stereo complex formation between enantiomeric PLA-PEG-PLA triblock copolymers: characterization and use as protein delivery microparticulate carriers, J. Appl. Polym. Sci. 2000, 75,1615-1623.
    [16] Chop H. J. and Kunioka M., “Preparation conditions and swelling equilibria of hydrogel prepared by γ-irradiation from microbial poly(γ-glutamic acid)”, Radiat. Phys. Chem. Vol. 46, No. 2, pp. 175-179 (1995).
    [17] French D., Himmelstein K. and Mauger J. M., “Physicochemical aspects of controlled release of substituted benzoic and naphthoic acids from carbopol gels”, J. Contr. Rel., 37, 281 (1995).
    [18] Peppas N. A., Moynihah H. J. and Lucy M. L., “The structure of highly crosslinked poly (2-hydroxyethyl methacrylate) hydrogel”, J. Biomed. Mat. Res., 19, 397 (1985).
    [19] 原著 Richard P. Franz, R. Erich Bauman,主譯瞿佳,隱形眼鏡基礎,上海科學技術出版社,1994
    [20] 齊備,隱形眼鏡手冊,上海科學技術出版社,1997
    [21] 瞿佳、呂帆,隱形眼鏡學,上海科學技術出版社,1997
    [22] Robert Edwards, ”CONTACT LENSES A-Z”, Caroline Makepeace
    [23] Speckhard T. A.; Cooper, S. L. Rubber Chem. Technol. 1986, 59,405
    [24] Cooper, S. L. et. al, J. Macromol. Sci. Phys. 23,175(1984)
    [25] Cooper, S. L. et. al, J. Macromol. Chem.. 184, 651 (1983)
    [26] Knutson, K. J. Polym. Sci. Polym. Chem. Ed. 15, 1655(1977)
    [27] Matton, W. and Schneider, N. S., Pplom. Eng. Sci. 19, 1122(1979)
    [28] Yves Camberlin and Jean Pierre PAscault , J. Polym. Sci.:Polymer Chemisty Edition,1983, 21, 415-423
    [29] Mitsui Nisso Corp.Japan Kokai,Tokkyo,Koho,Jpn.Pat.58,217,515
    [30] Kotomkin V. Y., Baburina V. A., Lebedov E. P., Bylev V. A., Yasmikova T. E., and Reikhsfeld V. O., Primonennie K. P., Fosforogan K. I., Soedin L., 23(1980); Chem. Abstr., 95:43841d.
    [31] Kotomkin V. Y., Baburna V. A., Lebdev V. P., and Kercha Y. Y., Plastic Massy, 27(1981); Chem, Abstr., 95: 43841d.
    [32] Sava, m. Bruma, B. Schulz, F. Mercer, V. N. Reddy, and N. Belomoina, J. Appl. Polym. Sci. 65, 1553~1538 (1997).
    [33] Lin M. F., Shu Y. C., Tsen W. C., Chuang F. S., J. Appl. Sci. 81, 3489(2001)
    [34] Shu Y. C., Lin M. F., Tsen W. C., Chuang F. S., J. Appl. Polym. Sci., 81, 3502 (2001)
    [35] Lin M. F., Tsen W. C., Shu Y. C. and Chuang F. S. , J. Appl. Polym. Sci.,79, 881 (2001)
    [36] Ho T. and Wynne K. J., Prepr. ACS Polym. Mat. Sci. Eng. Div.,67,445(1992)
    [37] Kuznetsova V. P., Zapunnaya K., USSR 422,246; Chem. Abstr., 90;7759.
    [38] Masiulanis B. and Zielinski R., J. Appl. Polym. Sci., Vol. 30,2731(1985).
    [39] Petrovic Z. S. et. al. ,J. Appl. Polym. Sci., Vol51, 1087 (1994).
    [40] Wang H. H. and Lin M. F.,J. Appl. Polym. Sci.,Vol.43,263(1991)
    [41] Lin M. F., Chuang F. S. , Shu Y. C. and Tsen W. C., Polymer-Plastics Technology and Engineering , 37(1),71~102(1998)
    [42] Wang H. H., Lin M. F., Journal of Applied Polymer Science, Vol.68, 1031~1043(1998).
    [43] Hilado C. J., Casey C. J., Chistenson D. F., and Lipowitz J., Combust J. Toxicol. 5, 130(1978).
    [44] Liu Y. L., Hsiue G. H., Lan C. W., Kuo J. K., Jeng R. J., and Chiu Y. S., J. Appl. Polym. Sci., 63, 875~882(1997).
    [45] Kotomkin V. Y., Baburina V. A., Lebedov E. P., Bylev V. A., Yasmikova T. E., and Reikhsfeld V. O., Khimyai Parki Primonennie,Kremnii I Fosforogan, Soedin L, 23(1980); Chem. Abstr., 95:43841d
    [46] Richert L, Lavalle P, Payan E, Shu ZX, Prestwich GD, Stoltz JF, Scha P, Voegel JC, Picart C. Layer by Layer buildup of polysaccharide films: physical chemistry and cellular adhesion aspects. Langmuir 2004; 20: 448-58.
    [47] Shen C, Russel WB, Auzerais FM. Materials, Interfaces and Electrochemical Phenomena Colloidal gel filtration: Experiment and Theory. AIChE Journal 1993; 40: 1876-91.
    [48] Son W. K., Youk J. H., Lee T. S., Park W. H. Preparation of Antimicrobial Ultrafine Cellulose Acetate Fibers with Silver Nanoparticles. Macromol. Rapid Commun. 2004; 25: 1632-7.
    [49] Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 2004; 275:177–82.
    [50] Tan Q., Ji J., Barbosab M. A., Fonseca C., Shen J. Constructing thromboresistant surface on biomedical stainless steel via layer-by-layer deposition anticoagulant. Biomaterials 2003; 24: 4699-705.
    [51] Thierry B, Winnik F. M., Merhi Y., Silver J, Tabrizian M. Bioactive coatings of endovascular stents based on polyelectrolyte multilayers. Biomacromolecules 2003; 4: 1564-71.
    [52] Thierry B, Winnik F. M., Merhi Y., Tabrizian M. Nanocoatings onto arteries via layer-by-layer deposition: toward the in vivo repair of damaged blood vessels. J Am Chem Soc 2003; 125: 495-9
    [53] Uchida Y., Izume M., Ohtakara A. Chitin and Chitosan, Elsevier Applied Science, London and New York, 1988, p.373.
    [54] Wang Y., Wang X., Hu C. Layer-by-Layer Self-Assembled Ultrathin Multilayer Films of Lanthanide Polyoxometalates and Poly(allylamine Hydrochloride) and Their Photoluminescent Properties. J Colloid Interface Sci 2002; 249: 307-15.
    [55] Winterton L. C., Andrade J. D., Feijen J., Kim S. W. Heparin interaction with protein with protein-adsorbed surfaces. J Coll Interface Sci 1986; 111: 314-42.
    [56] Mark Van Beek, Lyndon Jones, Heather Sheardown. Hyaluronic acid containing hydrogels for the reduction of protein adsorption. Biomaterials 29 (2008) 780–789.
    [57] Yang M. C., Lin W. C. Protein adsorption and platelet adhesion of polysulfone membrane immobilized with chitosan and heparin conjugate, Polymers for Adv Tech 2003; 14: 103-13.
    [58] Ye S., Wang C., Liu X., Tong Z. Deposition temperature effect on release rate of indomethacin microcrystals from microcapsules of layer-by-layer assembled chitosan and alginate multilayer films. J Control Release 2005; 106:319-28.
    [59] Zamore A. M. Process for producing an implantable apparatus comprising a biomedical device coated with crosslinked TPU. United States Patent: 6,558,732.
    [60] Liu Y. L. Hsiue G. H., Lan C. W., Kuo J. K., Jeng R. J., and Chiu Y. S., J. Appl. Polym. Sci., 63, 875~882(1997).
    [61] Beek M. V., Jones L., Sheardown H. Hyaluronic acid containing hydrogels for the reduction of protein adsorption. Biomaterials 2008;29:780-9.
    [62] Mueller K, Hieber S, Plankl W. Strong, silicone containing polymers with high oxygen permeability. US Patent 4,486,577, 1984.
    [63] Chang W. L., Decomposition behavior of polyurethanes via mathematical simulation. J Appl Polym Sci 1994;53:1759-69.
    [64] Lin M. F., Shu Y. C, Tsen W. C., Chuang F. S. Synthesis of polyurethane-imide (PU-imide) copolymers with different dianhydrides and their properties. Polym Int 1999;48:433-45.
    [65] Huglin M. B. and Zakaria M. B., Observation on the Homogeneity of Crosslinked Copolymers Prepared by λ-irradiation , Polymer ,25,797(1997).
    [66] Florkey L., Fink B.A., Mitchell L., Hill R.M., Tear exchange and oxygen reservoir effects in silicone hydrogel systems, Eye & Contact Lens: Science and Clinical Practice 29 (1) (2003) 90–92.
    [67] Tighe B. Silicone hydrogels: structure, properties and behaviour. In: Sweeney DF, ed. Silicone Hydrogels. Continuous Wear Contact Lenses. Edinburgh: Butterworth-Heinemann; 2004:1-27.
    [68] Efron N., Morgan P. B., Cameron I. D., Brennan N. A., Goodwin M. Oxygen Permeability and Water Content of Silicone Hydrogel. Contact Lens Materials Optom Vis Sci. 2007;84:e328-337.
    [69] Nicolson P. C., Vogt J. Soft contact lens polymers: an evolution. Biomaterials 2001;22:3273-83.
    [70] Abbasi F., Mirzadeh H., Katab A. A. Modification of polysiloxane polymers for biomedical applications: a review. Polym. Int 2001;50;1279-87.
    [71] Efron N., Morgan P. B., Cameron I. D., Brennan N. A., Goodwin M. Oxygen Permeability and Water Content of Silicone Hydrogel. Contact Lens Materials Optom Vis Sci. 2007;84:e328-337.
    [72] Walker, D.; Garrison, M.; Reichert, W. , Protein Adsorption to HEMA/EMA Copolymers Studied by Integrated Optical Techniques : Journal of Colloid and Interface Science 157, no. 1 (1993): 41-49.
    [73] Lee J. H, Jeong B. J., Lee H. B., Plasma protein adsorption and platelet adhesion onto comb-like PEO gradient surfaces, Journal of Biomaterial Meterials Research, Vol. 34, 105-114, 1997
    [74] Nagaoka S., Mori Y., Takiuchi H., Yokota K., Tanzawa H., and Nishumi S., Interaction between blood components and hydrogels with poly(oxyethylene)chains, Polymers as Biomaterials, 361-374, 1984
    [75] Breen J., van Duijin D., de Bleijser J., and Leyte J. C., Polyethylene oxide-Dynamics in aqueous solutions studied by nuclear magnetic relaxation, Ber. Bunsenges. Physik. Chem., 90, 1112-1122, 1986
    [76] Hammes G. G. and Roberts P. B., Cooperativity of solvent-macro molecule interactions in aqueous solutions of polyethylene glycol and polyethylene glycol-urea, J. Am. Chem. Soc., 90, 7119-7122, 1968
    [77] Mansoor A. and Kinam P., Prevention of protein adsorption and platelet adhesion on surfaces by PEO/PPO/PEO triblock copolymers, Biomaterials, Vol. 13, No. 10, 1992

    無法下載圖示 全文公開日期 2015/01/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE