簡易檢索 / 詳目顯示

研究生: MOHAMED TAHA AHMED AMIN
MOHAMED - TAHA AHMED AMIN
論文名稱: 三(羥基甲基)氨基甲烷及相關系列緩衝液之 交互作用:熱力學特性探討
TRIS [Tris(hydroxymethyl)aminomethane] and Related Buffers Interactions: Thermodynamic Characterization
指導教授: 李明哲
Ming-Jer Lee
口試委員: 陳延平
Yan-Ping Chen
林河木
Ho-Mu Lin
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 255
中文關鍵詞: Molecular InteractionsSolubilitiesDensitiesBiological Buffer Interactions
外文關鍵詞: Molecular Interactions, Solubilities, Densities, Biological Buffer Interactions
相關次數: 點閱:297下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • ABSTRACT

    The densities of aqueous and aqueous electrolyte solutions of tris(hydroxymethyl)ami¬nomethane (TRIS), N-[tris(hydroxymethyl)methyl]-3-aminopropanesulfonic acid (TAPS), N-[tris(hydroxymethyl)methyl]-3-amino-2-hydroxypropanesulfonic acid (TAPSO), and N-tris[hydroxymethyl]-4-amino-butanesulfonic acid (TABS), have been measured by a high-precision vibrating-tube digital densitometer from (298.15 to 328.15) K under atmospheric pressure. This study was undertaken to investigate the interactions between these compounds and electrolytes of potassium acetate (KAc), potassium bromide (KBr), potassium chloride (KCl), and sodium chloride (NaCl). The experimental densities were correlated as a function of the concentration of the buffers and ionic salts. The solubilities of buffers at 298.15 K in aqueous and in aqueous electrolyte solutions have also been determined from the experimental results of density measurements. The solubility data served to estimate the apparent transfer free energies ( ) and transfer molar volumes ( ) of buffers from water to aqueous electrolyte solutions at 298.15 K. The contributions of various functional groups of these compounds were estimated from the and results.
    On the basis of density measurements, apparent molar volumes ( ) of 4-morpholineethanesulfonic acid (MES), 4-morpholinepropanesulfonic acid (MOPS), 3-morpholino-2-hydroxypropanesulfonic acid (MOPSO), and 4-(N-morpholino)butane sulfonic acid (MOBS) in water and in aqueous solutions of KAc, KCl, KBr, and NaCl have been determined at 298.15 K. The transfer molar volumes ( ) from water to aqueous electrolyte solutions, obtained from the apparent molar volume at infinite dilution ( ), have been calculated. In addition, the contributions of some functional groups of these buffers were estimated form the and results.
    The densities of aqueous 1,4-dioxane and ethanol solutions of TRIS, TAPS, TASO, TABS, MES, MOPS, MOPS, and MOBS were measured at different temperatures. The solubilities of these buffers in water and at several concentrations of 1,4-dioxane and ethanol at 298.15 K have also been determined from the experimental results of density measurements. At saturation conditions, we have found that MOPS, MOBS, and TABS induced two-liquid-phase separation for 1,4-dioxane + water mixed solvent system. Liquid–liquid equilibrium (LLE) data are presented for the ternary mixtures of water + 1,4-dioxane + MOPS and water + 1,4-dioxane + MOBS at 298.15 K under atmospheric pressure. The solubility data were further used to calculate the contribution of transfer free energies ( ) of various functional groups from water to the aqueous 1,4-dioxane and ethanol solutions at 298.15 K.
    On the basis of apparent transfer free energies ( ), through the solubility measurements, the interactions of zwitterionic glycine peptides: glycine (Gly), diglycine (Gly2), triglycine (Gly3), and tetraglycine (Gly4) with several common neutral pH, amine-based buffers have been studied. The transfer free energies ( ) of the peptide backbone unit (–CH2C=O–NH–) contributions have been estimated from values. We have also measured the interaction of TRIS buffer with Bovine Serum Albumin (BSA), as a globular protein, using dynamic light scattering (DLS).


    ABSTRACT

    The densities of aqueous and aqueous electrolyte solutions of tris(hydroxymethyl)ami¬nomethane (TRIS), N-[tris(hydroxymethyl)methyl]-3-aminopropanesulfonic acid (TAPS), N-[tris(hydroxymethyl)methyl]-3-amino-2-hydroxypropanesulfonic acid (TAPSO), and N-tris[hydroxymethyl]-4-amino-butanesulfonic acid (TABS), have been measured by a high-precision vibrating-tube digital densitometer from (298.15 to 328.15) K under atmospheric pressure. This study was undertaken to investigate the interactions between these compounds and electrolytes of potassium acetate (KAc), potassium bromide (KBr), potassium chloride (KCl), and sodium chloride (NaCl). The experimental densities were correlated as a function of the concentration of the buffers and ionic salts. The solubilities of buffers at 298.15 K in aqueous and in aqueous electrolyte solutions have also been determined from the experimental results of density measurements. The solubility data served to estimate the apparent transfer free energies ( ) and transfer molar volumes ( ) of buffers from water to aqueous electrolyte solutions at 298.15 K. The contributions of various functional groups of these compounds were estimated from the and results.
    On the basis of density measurements, apparent molar volumes ( ) of 4-morpholineethanesulfonic acid (MES), 4-morpholinepropanesulfonic acid (MOPS), 3-morpholino-2-hydroxypropanesulfonic acid (MOPSO), and 4-(N-morpholino)butane sulfonic acid (MOBS) in water and in aqueous solutions of KAc, KCl, KBr, and NaCl have been determined at 298.15 K. The transfer molar volumes ( ) from water to aqueous electrolyte solutions, obtained from the apparent molar volume at infinite dilution ( ), have been calculated. In addition, the contributions of some functional groups of these buffers were estimated form the and results.
    The densities of aqueous 1,4-dioxane and ethanol solutions of TRIS, TAPS, TASO, TABS, MES, MOPS, MOPS, and MOBS were measured at different temperatures. The solubilities of these buffers in water and at several concentrations of 1,4-dioxane and ethanol at 298.15 K have also been determined from the experimental results of density measurements. At saturation conditions, we have found that MOPS, MOBS, and TABS induced two-liquid-phase separation for 1,4-dioxane + water mixed solvent system. Liquid–liquid equilibrium (LLE) data are presented for the ternary mixtures of water + 1,4-dioxane + MOPS and water + 1,4-dioxane + MOBS at 298.15 K under atmospheric pressure. The solubility data were further used to calculate the contribution of transfer free energies ( ) of various functional groups from water to the aqueous 1,4-dioxane and ethanol solutions at 298.15 K.
    On the basis of apparent transfer free energies ( ), through the solubility measurements, the interactions of zwitterionic glycine peptides: glycine (Gly), diglycine (Gly2), triglycine (Gly3), and tetraglycine (Gly4) with several common neutral pH, amine-based buffers have been studied. The transfer free energies ( ) of the peptide backbone unit (–CH2C=O–NH–) contributions have been estimated from values. We have also measured the interaction of TRIS buffer with Bovine Serum Albumin (BSA), as a globular protein, using dynamic light scattering (DLS).

    CONTENTS List of Figures VII List of Tables XVII List of Schemes XXI CHAPTER 1 Introduction 1 1.1 Buffer Concept 1 1.2 Buffers in Nature 1 1.3 Theory of Buffer Action 3 1.4 Applications of pH Buffers 3 1.5 Biological Buffers 5 1.6 Requirements of Biological Buffers 6 1.7 Aim of the Study and Survey of the Contents 8 CHAPTER 2 Experimental Section 10 2.1 Materials 10 2.2 Density Measurements 11 2.3 Solubility Measurements 12 2.4 Theory and Design 12 2.4.1 Conversion of Composition to Molarity and Molality 12 2.4.2 Transfer Free Energy 13 2.5 Liquid-Liquid Equilibrium Measurements 15 2.6 Dynamic Light Scattering (DLS) Measurements 17 CHAPTER 3 Interaction of Biological Buffers with Electrolytes: Densities and Solubilities of Aqueous and Electrolyte Solutions of TRIS, TAPS, TAPSO, and TABS 20 3.1 Density Data 21 3.2 Solubility Data 23 3.3 Apparent Transfer Free Energies 24 3.4 Calculation of Group Contributions 26 3.5 Transfer Molar Volumes 27 CHAPTER 4 Volumetric Properties of MES, MOPS, MOPSO, and MOBS in Water and in Aqueous Electrolyte Solutions 78 4.1 Apparent Molar Volumes 78 4.2 Apparent Molar Volume at Infinite Dilution 79 4.3 Transfer Molar Volumes 79 4.4 Calculation of Group Contributions 80 CHAPTER 5 Densities and Solubilities of Some Important Buffers in Aqueous 1,4-Dioxane and Ethanol Solutions 96 5.1 Density Data 96 5.2 Solubility Data 97 5.3 Buffers Induced Two-Liquid Phase in 1,4-Dioxane + Water Mixtures 98 5.4 Apparent Transfer Free Energies 100 5.5 Calculation of group contributions 101 CHAPTER 6 Interactions of TRIS, TES, TAPS, TAPSO, and TABS Buffers with Peptide Backbone 175 6.1 Density Data 177 6.2 Solubility Data 179 6.3 Transfer Free Energy ( ) of Zwitterionic Glycine Peptides from Water to Aqueous Buffer Solutions 180 6.4 The Contribution of Peptide Backbone Unit for Transfer Free Energy 181 6.5 Dynamic Light Scattering (DLS) Measurements 182 CHAPTER 7 Conclusions 221 References 224 List of Publications 250 Nomenclatures 251 Biographical Data 253

    References

    (1) Hall, N. F.; Sprinkle, M. R. Relations between the Structure and Strength of Certain Organic Bases in Aqueous Solution. J. Am. Chem. Soc. 1932, 54, 3469–3485.
    (2) Bates, R.G.; Allen, G. F. Acid Dissociation Constant and Related Thermodynamic Quantities for Triethanolammonium Ion in Water from 0°C to 50°C. J. Research Natl. Bur. Standards 1960, 64A, 343–346.
    (3) Bates, R.G.; Schwarzenbach, G. Triäthanolamin als Puffersubstanz. Helv. Chim. Acta, 1954, 37, 1437–1439.
    (4) Gomori, G. Preparation of Buffers for Use in Enzyme Studies. Methods Enzymol. 1955, 1, 138–146.
    (5) Good, N. E.; Winget, G. D.; Winter, W.; Connolly, T. N.; Izawa, S.; Singh, R. M. M. Hydrogen Ion Buffers for Biological Research. Biochemistry 1966, 5, 467–477.
    (6) Ferguson, W. J.; Braunschweiger, K. I.; Braunschweiger,W. R.; Smith, J. R.; McCormick, J. J.; Wasmann, C. C.; Jarvis, N. P.; Bell, D. H.; Good, N. E. Hydrogen Ion Buffers for Biological Research. Anal. Biochem. 1980, 104, 300–310.
    (7) Goldberg, R. N.; Kishore, N.; Lennen, R. M. Thermodynamic Quantities for the Ionization Reactions of Buffers. J. Phys. Chem. Ref. Data 2002, 31, 231–370.
    (8) Roy, R. N.; Roy, L. N. Simon, A. N. Moore, A. C.; Seing, L. A.; Richards, S. J.; Craig, H. D.; Childers, B. A.; Tabor, B. J.; Himes, C. A.; Viele1, K. E. Thermodynamics of the Second Dissociation Constant of N-tris[Hydroxymethyl]-4-aminobutanesulfonic Acid (TABS) from 5 to 55°C. J. Solution Chem. 2004, 33, 353–364.
    (9) Roy, R. N.; Roy, L. N.; Tabor, B. J.; Himes, C. A.; Richards, S. J.; Simon, A. N.; Moore, A. C.; Seing, L. A.; Craig, H. D.; Robinson, K. T. Buffer Standards for the Physiological pH of Zwitterionic Compounds, MOBS and TABS from 5 to 55°C. J. Solution Chem. 2004, 33, 1199–1211.
    (10) Roy, R. N.; Roy, L. N.; LeNoue, S. R.; Denton, C. E.; Simon A. N.; Richards, S. J.; Moore, A. C.; Roy, C. N.; Redmond, R. R.; Bryant P. A. Thermodynamic Constants of N-[Tris(hydroxymethyl)methyl-3-amino]propanesulfonic Acid (TAPS) from the Temperatures 278.15 K to 328.15 K. J. Chem. Thermodyn. 2006, 38, 413–417.
    (11) Roy, L. N.; Roy, R. N.; Denton, C. E.; LeNoue, S. R. ; Himes, C. A.; Richards, S. J.; Simon, A. N.; Roy, C. N.; Somal1, V. S. Buffer Standards for the Physiological pH of the Zwitterionic Compound, TAPS, from 5 to 55°C. J. Solution Chem. 2006, 35, 551–566.
    (12) Roy, L. N.; Roy, R. N.; Denton, C. E.; LeNoue, S. R.; Roy, C. N.; Ashkenazi, S.; Williams, T. B.; Church, D. R.; Fuge, M. S.; Sreepada, K. N. Second Dissociation Constant of Bis-[(2-hydroxyethyl)amino]acetic Acid (BICINE) and pH of Its Buffer Solutions from 5 to 55 ◦C. J. Solution Chem. 2006, 35, 605–624.
    (13) Roy, R. N.; Roy, L. N.; C. N., Ashkenazi, Wollen, J. T.; Duneth, C. D.; Fuge, M. S.; Durden, J. L.; Roy, C. N., Huges, H. M.; Morris, B. T., Cline, K. L. Buffer Standards for pH Measurement of N-(2-Hydroxyethyl)piperazine-N'-2-ethanesulfonic Acid (HEPES) for I = 0.16 mol‧kg−1 from 5 to 55°C. J. Solution Chem.2009, 38, 449–458.
    (14) Roy, L. N.; Roy, R. N.; Denton, C. E.; LeNoue, S. R.; Roy, C. N.; Ashkenazi, S.; Fuge, M. S.; Wollen, J. T.; Stegner, J. M.; Allen, K. A.; Harmon, M. A. Buffer Standards for the Biochemical pH of 3-(N-Morpholino)-2-hydroxypropanesulfonic Acid from (278.15 to 328.15) K. J. Chem. Eng. Data 2009, 54, 1860–1864.
    (15) Roy, L. N.; Roy, R. N.; Denton, C. E.; LeNoue, S. R.; Fuge, M. S.; Dunseth, C. D.; Durden, J. L.; Roy, C. N.; Bwashi, A.; Wollen, J. T.; DeArmon, S. J. Buffer Standards for the Physiological pH of 3-[(1,1-Dimethyl-2-hydroxymethyl)amino]-2-hydroxypropanesulfonic Acid from (278.15 to 328.15) K. J. Chem. Eng. Data 2009, 54, 428–435.
    (16) Kundu, K. K.; De, A. L.; Das, M. N. Studies in Some ‘Isodielectric’ Media. Part IV. Solvent Effect on the Proton Transfer Equilibria of Some Acids in Methanol–Propylene Glycol at 25°C. J. Chem. Soc. Dalton 1972, 1, 386–391.
    (17) Kundu, K. K.; De, A. L.; Das, M. N. Solvent Effect on the Dissociation of Protonated Tris(hydroxymethyl)-methylamine and p-Nitroanilinium Ion in Water–Ethylene Glycol Media at 25°C. J. Chem. Soc. Perkin II 1972, 2, 2063–2069.
    (18) Bate, R. G.; Falcone Jr, J. S.; Ho, A.Y.W. Transfer Energies and Solute–Solvent Effects in the Dissociation of Protonated “TRIS” in N-Methylpropionamide–Water Solvents. Anal. Chem. 1974, 46, 2004–2008.
    (19) Bose, K.; Kundu, K. K. Proton-transfer Equilibria in Isodielectric Acetronitrile–Ethylene Glycol Mixtures at 298.15 K. J. Chem. Soc. Perkin II 1979, 2, 1208–1213.
    (20) Roy, R. N.; Gibbons, J. J.; Krueger, C.; Lacross, G. Jr. Second-Stage Dissociation of N,N-Bis(2-hydroxyethyI)-2-aminoethanesulfonic Acid (“BES”) in Water and in 50 Mass Per Cent Methanol + Water from 278.15 to 328.15 K. J. Chem. Thermodyn. 1977, 9, 325–332.
    (21) Taylor, M. J. Assignment of Standard pH Values (pH*(S)) to Buffers in 20 and 30 % (w/w) Dimethyl Sulfoxide/Water Mixtures at Normal and Subzero Temperatures. J. Chem. Eng. Data 1979, 24, 230–233.
    (22) Roy, R. N.; Gibbons, J. J.; Buechter, K.; Faszholz, S. Second-Stage Dissociation of N,N-Bis(2-hydroxyethyl)-2-aminoethanesulfonic Acid ( BES) in Water + 10, + 30, and + 50 Mass Per Cent Tetrahydrofuran from 278.15 to 328.15 K. J. Chem. Thermodyn. 1982, 14, 1011–1018.
    (23) Hassan, A.; Azab, H. A.; El Gyara, S. A.; Khafagy, Z. A. Medium Effect on the Second-Stage Dissociation Constant of N-(2-Acetamido)iminodiacetic Acid (H2ADA). Can. J. Chem. 1992, 70, 1684–1687.
    (24) Azab, H. A. Potentiometric Determination of the Second-Stage Dissociation Constants of Some Hydrogen Ion Buffers for Biological Research in Various Water + Organic Solvent Mixtures. J. Chem. Eng. Data 1993, 38, 453–457.
    (25) Azab, H. A.; Hassan, A.; Khafagy, Z. A. Potentiometric Determination of the Second-Stage Dissociation Constant of N,N-Bis(2-hydroxyethyl)-2-aminoethanesulfoni Acid in Various Water + Organic Solvent Mixtures. J. Chem. Eng. Data 1993, 38, 231–233.
    (26) Azab, H. A.; Khafagy, Z. A.; Hassan, A.; El-Nady, A. M.; Medium Effect on the Second-Stage Dissociation Constant of N,N-Bis( 2-hydroxyethy1)glycine. J. Chem. Eng. Data 1994, 39, 599–601.
    (27) Orabi, A. S.; Azab, H. A. Potentiometric Determination of the Apparent Dissociation Constants of 3-(Cyclohexylamino)-1-propanesulfonic Acid and 3-(Cyclohexylamino) -2-hydroxy-1-propanesulfonic Acid in Various Hydroorganic Media. J. Chem. Eng. Data 1997, 42, 1219–1223.
    (28) Azab, H. A.; Orabi, A. S.; Abd El-Salam, E. T. Apparent Second-Stage Dissociation Constants of Some Zwitterionic Buffers for Biochemical and Physiological Research in Various Hydroorganic Media. J. Chem. Eng. Data 1998, 43, 703–707.
    (29) Azab, H. A.; Deghaidy, F. S.; Orabi, A. S.; Farid, N. Y. Potentiometric Determination of the Apparent Dissociation Constants of Some N-Substituted 3-Amino-2-hydroxypropanesulfonic Acids in Various Hydroorganic Media. J. Chem. Eng. Data 1998, 43, 245–248.
    (30) Bulos, B. N.; Jumean, F. H. Calorimetric Determination of Enthalpies for the Proton Ionization of N,N-Bis[2-hydroxyethyl]-2-aminoethanesulfonic Acid (BES) and N-Tris[hydroxymethyl]methyl-2-aminoethanesulfonic Acid (TES) in Water–Methanol Mixtures. Thermochim. Acta 2004, 411, 91–94.
    (31) Taha, M. Thermodynamic Study of the Second-Stage Dissociation Of N,N-Bis(2-hydroxyethyl)glycine (BICINE) in Water at Different Ionic Strength and Different Solvent Mixtures. Ann. Chim. (Rome) 2004, 94, 971–978.
    (32) Taha, M. Buffers for the Physiological pH Range: Acidic Dissociation Constants of Zwitterionic Compounds in Various Hydroorganic Media. Ann. Chim. (Rome) 2005, 95, 105–109.
    (33) Taha, M.; Fazary, A. Eid. Thermodynamics of the Second-Stage Dissociation of 2-[N-(2-Hydroxyethyl)-N-methylaminomethyl]-propenoic Acid (HEMPA) in Water at Different Ionic Strength and Different Solvent Mixtures. J. Chem. Thermodyn. 2005, 37, 43–48.
    (34) Jumean, F. H.; Abdo, N. M. Calorimetric Determination of Enthalpy Changes for the Proton Ionization of Glycine, N,N-Bis(2-hyroxyethyl)glycine (“bicine”) and N-Tris(hydroxymethyl)methylglycine (“Tricine”) in Water–Methanol Mixtures. Thermochim. Acta 2006, 448, 44–46.
    (35) Jumean, F. H.; Abdo, N. M. Calorimetric Determination of Enthalpy Changes for Proton Ionization of N-[2-Hydroxyethyl]piperazine-N'-[2-ethanesulfonic Acid] (HEPES) and N-[2-Hydroxyethyl]piperazine-N'-[2-hydroxypropanesulfonic Acid] (HEPPSO) in Water–Methanol Mixtures. Thermochim. Acta 2006, 447, 112–114.
    (36) Jumean, F. H.; Abdo, N. M.; Khamis, M. I. Calorimetric Determination of Enthalpy Changes for the Proton Ionization of N-Tris(hydroxymethyl)methyl-4-aminobutane-sulfonic Acid (TABS), N-Tris(hydroxymethyl)methyl-3-aminopropanesulfonic Acid (TAPS) and 3-[N-Tris(hydroxymethyl)methylamino]-2-hyroxypropane sulfonic Acid (TAPSO) in Water–Methanol Mixtures. Thermochim. Acta 2008, 475, 22–24.
    (37) Schindler, P.; Robinson, R. A.; Bates, R. G. Solubility of Tris(hydroxymethyl) aminomethane in Water–Methanol Solvent Mixtures and Medium Effects in Dissociation of Protonated Base. J. Res. Natl. Bur. Std. 1968, 72A, 141–148.
    (38) El-Harakany, A. A.; Barakat, A. O. Solubility of Tris-(hydroxymethyl)-amino methane in Water-2-Methoxyethanol Solvent Mixtures and the Solvent Effect on the Dissociation of the Protonated Base., J. Solution Chem. 1985, 14, 263–269.
    (39) Lee, M. J.; Chang,Y. K.; Lin, H. M. Separation of 4-Morpholinepropanesulfonic Acid from Its Aqueous Solution. Ind. Eng. Chem. Res. 1997, 36, 5399–5402.
    (40) Blum, R.; Fog, H. M. Metal Buffers as Standards in Direct Potentiometric Determination of Metal Ion Activities. J. Electroanal. Chem. 1972, 34, 485–488.
    (41) Martell, A. E. Chelating Agents for Metal Buffering and Analysis in Solution. Pure Appl. Chem. 1978, 50, 813–829.
    (42) Fischer, B. E.; Haring, U. K.; Tribolet, R.; Sigel, H. Metal Ion/Buffer Interactions Stability of Binary and Ternary Complexes Containing 2-Amino-2(hydroxymethyl)-l,3-propanediol (Tris) and Adenosine 5'-Triphosphate (ATP). Eur. J. Biochem. 1979, 94, 523–530.
    (43) Bips, U.; Elias, H.; Hauroder, M.; Kleinhans, G.; Pfeifer, S.; Wannowius, K. J. Lutidine Buffers of Very Limited Coordination Power for the pH Range 3–8. Inorg. Chem. 1983, 22, 3862–3865.
    (44) Menabue, L.; Saladini, M. Transition Metal(II) Complexes of a Biological Buffer. Structural and Spectroscopic Study on Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) Complexes of N-[2-Hydroxy-l,l-bis-(hydroxymethyl)ethyl]glycine. J. Cryst. Spect. Res. 1992, 26, 713–719.
    (45) Arevalillo, A.; Pena, M. J. Complex Species of Zn(II) and Cu(II) in TRIS Buffer Solution-II Cu(II). Electrochim. Acta 1993, 38, 951-961.

    (46) Azab, H. A.; El-Nady, A. M.; Hassan, A.; Azkal, R. S. A. Ternary Complexes in Solution. Comparison of the Coordination Tendency of Some Polybasic Oxygen Acids toward the Binary Complexes of Cu(II) and Adenosine 5'-Mono-, 5'-Di-, and 5'-Triphosphate. J. Chem. Eng. Data 1993, 38, 502–505.
    (47) Anderegg, G. Determination of Stability Constants of Metal Complexes with Potentiometric pH Titrations. Anal. Chim. Acta 1993, 282, 485-488.
    (48) Loginova, L.; Bazilyanskaya, V. Cu2+- and Cd2+-buffers in Water-Ethanol Media. Anal. Chim. Acta 1995, 315, 55-61.
    (49) Vasconcelos, M. T. S. D.; Azenha, M. A. G. O.; Lage, O. M. Electrochemical Evidence of Surfactant Activity of the Hepes pH Buffer Which May Have Implications on Trace Metal Availability to Cultures in Vitro. Anal. Biochem. 1996, 241, 248–253.
    (50) Azab, H. A.; El-Nady, A. M.; El-Korashy, S. A.; Hamed, M. M. A. Ternary Complexes of Co(II) with Adenosine 5'-Mono-, 5'-Di-, and 5'-Triphosphates as Primary Ligands and Some Biologically Important Zwitterionic Buffers as Secondary Ligands. J. Chem. Eng. Data 1996, 40, 83–87.
    (51) Yu, Q.; Kandegedara, A.; Xu, Y.; Rorabacher, D. B. Avoiding Interferences from Good’s Buffers: A Contiguous Series of Noncomplexing Tertiary Amine Buffers Covering the Entire Range of pH 3–11. Anal. Biochem. 1997, 253, 50–56.
    (52) El-Roudi, O. M.; Abd Alla, E. M.; Ibrahim, S. A. Potentiometric Studies on the Binary Complexes of N-[Tris(hydroxymethyl)methyl]glycine with Th4+, Ce3+, La3+, and UO22+ and Medium Effects on a Th-Tricine Binary Complex. J. Chem. Eng. Data 1997, 42, 609–613.
    (53) He, X. -F.; Le, X. -Y.; Ji, L. -N. Stability of Ternary Copper( II ) Complexes Formed by Heteroaromatic N Base and a Biological Buffer (Bicine). J. Inorg. Biochem. 1997, 67, 292–292(1).
    (54) Vasconcelos, M. T. S. D.; Azenha, M. A. G. O.; Almeida, C. M. R. Copper(II) Complexation Properties and Surfactant Activity of 3-[N,N-Bis(2-hydroxyethyl) amino]-2-hydroxypropanesulfonic Acid and N-(2-Hydroxyethyl)piperazine-N/-2-hydroxypropanesulfonic Acid pH Buffers Which May Affect Trace Metal Speciation in in Vitro Studies. Anal. Biochem. 1998, 265, 193–201.
    (55) Vasconcelos, M. T. S. D.; Almeida, C. M. R. Electrochemical Study of Proton Ionisation, Copper(II) Complexation and Surfactant Properties of Piperazine-N-N'-Bis[2-hydroxypropanesulfonic acid] pH Buffer Comparison with Other N-Substituted Aminosulfonic Acids pH Buffers. Anal. Chim. Acta 1998, 369, 115–122.
    (56) He, X.-F.; Long, L.-S; Wu, F.; Le, X.-Y; Chen, X. -M.; Ji, L. -N.The Ternary Metal Mixed Ligand Complexes Formed by Benzimidazole and N, N- Bis( 2-hydroxyethyl ) glycine. Sci. China, Ser. B Chem. 1999, 42, 185–194.
    (57) Soares, H. M. V. M.; Conde, P. C. F. L.; Almeida, A. A.N.; Vasconcelos, M. T. S. D. Evaluation of N-Substituted Aminosulfonic Acid pH Buffers with a Morpholinic Ring for Cadmium and Lead Speciation Studies by Electroanalytical Techniques. Anal. Chim. Acta 1999, 394, 325–335.
    (58) He, X. -F.; Long, L. -S.; Le X. -Y.; Chen X. -M.; Ji, L. -N. Zhou, Z. -Y. Solid and Solution Studies of Ternary Copper(II) Complexes Formed by Heteroaromatic N Bases and the Anion of N,N-Bis(2-hydroxyethyl)glycine (Bicine). Inorg. Chim. Acta 1999, 85, 326–331.
    (59) Soares, H. M. V. M.; Pinho, S. C.; Barros, G. R. T. M. Influence of N-Substituted Aminosulfonic Acids with a Morpholinic Ring pH Buffers on the Redox Processes of Copper or Zinc Ions: A Contribution to Speciation Studies. Electroanalysis 1999, 11, 1312–1317.
    (60) Kandegedara, A; Rorabacher, D. B. Noncomplexing Tertiary Amines as “Better” Buffers Covering the Range of pH 3–11. Temperature Dependence of Their Acid Dissociation Constants. Anal. Chem. 1999, 71, 140–3144.
    (61) Bugella-Altamirano, E.; González-Pérez, J. M.; Sicilia Zafra, A. G.; Niclós-Gutiérrez, J.; Castiñeiras-Campos, A. Metal Chelates of N-carbamoylmethyl-iminodiacetate(2–) Ion. Part IV. Isostructural Ternary Mixed-Ligand Cobalt(II) and Nickel(II) Chelates with N-Carbamoylmethyl-iminodiacetate(2–) Ion, Imidazole and Aqua Ligands. Synthesis, Molecular and Crystal Structures and Properties of [M(ADA)(Him)(H2O)] ‧1.5H2O (M=Co, Ni). Polyhedron 2000, 19, 2473–2481.
    (62) Bugella-Altamirano, E.; González-Pérez, J. M.; Sicilia Zafra, A. G.; Niclós-Gutiérrez, J.; Castiñeiras-Campos. A. Metal Chelates of N-Carbamoylmethyl-iminodiacetate(2–) Ion. Part III. Synthesis, XRD Structures and Properties of N-Carbamoylmethyl-iminodiacetic Acid (H2ADA) and cis-Diaqua(N-carbamoylmethyl-iminodiacetato) Nickel(II), [Ni(ADA)(H2O)2]. Polyhedron 2000, 19, 2463–2471.
    (63) Soares, H. M. V. M.; Conde, P. C. F. L. Electrochemical Investigations of the Effect of N-Substituted Aminosulfonic Acids with a Piperazinic Ring pH Buffers on Heavy Metal Processes Which May Have Implications on Speciation Studies. Anal. Chim. Acta 2000, 421, 103–111.
    (64) Azab, H. A.; Orabi, A. S.; Abd El-Salam, E. T. Role of Biologically Important Zwitterionic Buffer Secondary Ligands on the Stability of the Mixed-Ligand Complexes of Divalent Metal Ions and Adenosine 5'-Mono-, 5'-Di-, and 5'-Triphosphate. J. Chem. Eng. Data 2001, 46, 346–354.
    (65) Anwar, Z. M.; Azab, H. A. Ternary Complexes Formed by Trivalent Lanthanide Ions, Nucleotides, and Biological Buffers. J. Chem. Eng. Data 2001, 46, 613–618.
    (66) Mash, H. E.; Chin, Y.-P. Complexation of Copper by Zwitterionic Aminosulfonic (Good) Buffers. Anal. Chem. 2003, 75, 671–677.
    (67) Machado, C. M. M.; Cukrowski, I; Gameiro, P.; Soares, H. M. V. M. Challenges in Modelling and Optimisation of Stability Constants in the Study of Metal Complexes with Monoprotonated Ligands Part I. A Glass Electrode Potentiometric and Polarographic Study of a Cu–TAPSO–OH System. Anal. Chim. Acta 2003, 493, 105–119.
    (68) Ahmed, I. T. Formation Constants of Ternary Complexes Involving Some Metal Ions, Tricine, Dicarboxylic Amino Acids, as well as N-(2-Acetamido)iminodiacetic Acid and 3-Amino-5-mercapto-1,2,4-triazole. J. Chem. Eng. Data 2003, 48, 272–276.
    (69) Magyar, J. S.; Godwin, H. A. Spectropotentiometric Analysis of Metal Binding to Structural Zinc-Binding Sites: Accounting Quantitatively for pH and Metal Ion Buffering Effects. Anal. Biochem. 2003, 320, 39–54.
    (70) Machado, C. M. M.; Scheerlinck, S.; Cukrowski, I.; Soares, H. M. V. M. Challenges in Modelling and Optimisation of Stability Constants in the Study of Metal Complexes with Monoprotonated Ligands Part III. A Glass Electrode Potentiometric and Polarographic Study of Cu–DIPSO–OH System. Anal. Chim. Acta 2004, 518, 117–126.
    (71) El-Roudi, O. M.; Abdel-Latif, S. A. Effect of Ionic Strength, Aquo-Organic Solvents, and Temperature on the Stabilities of N-[Tris(hydroxymethyl)methyl]glycine + Metal Complexes. J. Chem. Eng. Data 2004, 49, 1193–1196.
    (72) Azab, H. A.; Anwar, Z. A.; Sokar, M. Metal Ion Complexes Containing Nucleobases and Some Zwitterionic Buffers. J. Chem. Eng. Data 2004, 49, 62–72.
    (73) Calderón, A.; Yatsimirsky, A. K. Formation and Phosphodiesterolytic Activity of Lanthanide(III) N,N-Bis(2-hydroxyethyl)glycine Hydroxo Complexes. Inorg. Chim. Acta 2004, 357, 3483–3492.
    (74) Khalil, M. M.; Taha, M. Equilibrium Studies of Binary and Ternary Complexes Involving Tricine and Some Selected α-Amino Acids. Monatsh. Chem. 2004, 135, 385–395.
    (75) Taha, M.; Khalil, M. M. Mixed-Ligand Complex Formation Equilibria of Cobalt(II), Nickel(II), and Copper(II) with N,N-Bis(2-hydroxyethyl)glycine (Bicine) and Some Amino Acids. J. Chem. Eng. Data 2005, 50, 157–163.
    (76) Taha, M.; Khalil, M. M.; Mohamed, S. A. Metal Ion−Buffer Interactions. Complex Formation of N,N-bis(2-Hydroxyethyl)glycine (Bicine) with Various Biologically Relevant Ligands, J. Chem. Eng. Data 2005, 50, 882–887.
    (77) Sokołowska, M.; Bal, W. Cu(II) Complexation by ‘‘Non-Coordinating’’ N-2-Hydroxyethylpiperazine-N'-2-ethanesulfonic Acid (HEPES Buffer). J. Inorg. Biochem. 2005, 99, 1653–1660.
    (78) Machado, C. M. M.; Cukrowski, I.; Soares, H. M. V. M. Graphic Data Analysis and Complex Formation Curves as Modelling and Optimization Tools in Potentiometric and Voltammetric Speciation Studies of a Pb–(TAPSO)x–(OH)y System. Electroanalysis 2005, 17, 1291–1301.
    (79) Machado, C. M. M.; Cukrowski, I.; Soares, H. M. V. M. Interpretation of Non–Nernstian Slopes in Graphic Analysis of Data Collected in pH Range Close to Deprotonation of a Ligand Part I. A Glass Electrode Potentiometric and Polarographic Study of Cd–(TAPSO)x–(OH)y and Zn–(TAPSO)x–(OH)y Systems. Talanta 2006, 68, 819–830.
    (80) McGuigan, J. A. S.; Kay, J. W.; Elder, H. Y. Critical Review of the Methods used to Measure the Apparent Dissociation Constant and Ligand Purity in Ca2+ and Mg2+ Buffer Solutions. Prog. Biophys. Mol. Biol. 2006, 92, 333–370.
    (81) Mohamed, M. M. A.; Abd-Alla, E. M.; El-Badawy, A. E. Dimethyltin(IV) Complexes with Zwitterionic Buffers (Mes and Mops). J. Organomet. Chem. 2007, 692, 1735–1747.
    (82) Azab, H. A.; Abou El-Nour, K. M.; Sorror, S. H. Metal Ion Complexes Containing Dipeptides, Tripeptides, and Biologically Important Zwitterionic Buffers. J. Chem. Eng. Data 2007, 52, 381–390.
    (83) Montigny, C.; Champei, P. Use of Metallochromic Dyes and Potentiometric pH-Meter Titration to Detect Binding of Divalent Cations to ‘‘Good’s’’ Buffers: 4-Morpholinepropanesulfonic Acid (MOPS) Does not Bind Mg2+. Anal. Biochem. 2007, 366, 96–98.
    (84) Taha, M. Saqr, R. A.; Ahmed A. T. Thermodynamic Studies on Complexation of Divalent Transition Metal Ions with Some Zwitterionic Buffers for Biochemical and Physiological Research. J. Chem. Thermodyn. 2007, 39, 304–308.
    (85) Machado, C. M. M.; Gameiro, P.; Soares, H. M. V. M. Complexation of M–(Buffer)x–(OH)y Systems Involving Divalent Ions (Cobalt or Nickel) and Zwitterionic Biological Buffers (AMPSO, DIPSO, TAPS and TAPSO) in Aqueous Solution. J. Solution Chem. 2008, 37, 603–617.
    (86) Khalil, M. M.; Radalla, A. M.; Mohamed, A. G. Potentiometric Investigation on Complexation of Divalent Transition Metal Ions with Some Zwitterionic Buffers and Triazoles. J. Chem. Eng. Data DOI: 10.1021/je9002459.
    (87) Stellwagen, N. C.; Gelfi, C.; Righetti, P. G. The Use of Gel and Capillary Electrophoresis to Investigate Some of the Fundamental Physical Properties of DNA. Electrophoresis 2002, 23, 167–175.
    (88) Stellwagen, N. C.; Gelfi, C.; Righetti, P. G. The Free Solution Mobility of DNA. Biopolymers 1997, 42, 687–703.
    (89) Stellwagen, N. C.; Bossi, A.; Gelfi, C.; Righetti, P. G. DNA and Buffers: Are There Any Noninteracting, Neutral pH Buffers. Anal.Biochem. 2000, 287, 167–175.
    (90) Stellwagen, E.; Stellwagen, N. C. The Free Solution Mobility of DNA in Tris-acetate-EDTA Buffers of Different Concentrations, with and without Added NaCl. Electrophoresis 2002, 23, 1935–1941.
    (91) Stellwagen, N. C.; Gelfi, C.; Righetti, P. G. DNA-Histidine Complex Formation in Isoelectric Histidine Buffers. J. Chromatogr. A 1999, 838, 179–189.
    (92) Wenner, J. R.; Bloomfield, V. A. Buffer Effects on EcoRV Kinetics as Measured by Fluorescent Staining and Digital Imaging of Plasmid Cleavage. Anal. Biochem. 1999, 268, 201–212.
    (93) Sun, M.; Chen, J.; Liua, X. H.; Zhao, Y. F. Molecular Interaction Modeling of Ser-His Dipeptide and Buffers. J. Mol. Struct. (Theochem) 2004, 668, 47–49.
    (94) Ashcroft, S. J.; Booker, D. R.; Robin Turner, J. C. Density Measurement by Oscillating Tube. Effects of Viscosity, Temperature, Calibration and Signal Processing. J. Chem. Soc. Faraday Trans. 1990, 86, 145–149.
    (95) Fandino, O.; Garcia, J.; Comunas, M. J. P.; Lopez, E. R.; Fernandez, J. P. T. P  T Measurements and Equation of State (EoS) Predictions of Ester Lubricants up to 45 MPa. Ind. Eng. Chem. Res. 2006, 45, 1172–1182.
    (96) Bettin, H.; Spieweck, F. Die Dichte des Wassers als Funktion derTemperatur nach Einführung der Internationalen Temperaturskala von 1990. PTB-Mitt. 1990, 100, 195–196.
    (97) Nozaki, Y.; Tanford, C. The Solubility of Amino Acids and Related Compounds in Aqueous Urea Solutions. J. Biol. Chem. 1963, 238, 4074–4081.
    (98) Nozaki, Y.; Tanford, C. The Solubility of Amino Acids and Related Compounds in Aqueous Ethylene Glycol Solutions. J. Biol. Chem. 1965, 240, 3568–3573.
    (99) Nozaki, Y.; Tanford, C. The Solubility of Amino Acids, Diglycine, and Triglycine in Aqueous Guanidine Hydrochloride Solutions. J. Biol. Chem. 1970, 245, 1648–1652.
    (100) Venkatesu, P.; Lee, M. J.; Lin, H. M. Thermodynamic Characterization of the Osmolyte Effect on Protein Stability and the Effect of GdnHCl on Protein Denatured State. J. Phys. Chem. B. 2007, 111, 9045–9056.
    (101) Venkatesu, P.; Lee, M. J.; Lin, H. M. Trimethylamine N-oxide Counteracts the Denaturing Effects of Urea or GdnHCl on Protein Denatured State. Arch. Biochem. Biophys. 2007, 466, 106–115.
    (102) Auton, M.; Bolen, D.W. Additive Transfer Free Energies of the Peptide Backbone Unit that Are Independent of the Model Compound and the Choice of Concentration Scale. Biochemistry. 2004, 43, 1329–1342.
    (103) Liu, Y.; Bolen, D. W. The Peptide Backbone Plays a Dominant Role in Protein Stabilization by Naturally Occurring Osmolytes. Biochemistry 1995, 34, 12884–12891.
    (104) McMeekin, T. L.; Cohn, E. J.; Wear, J. H. Studies in the Physical Chemistry of Amino Acids, Peptides and Related Substances. III. The Solubility of Derivatives of the Amino Acids in Alcohol-Water Mixtures. J. Am. Chem. Soc. 1935, 57, 626–633.
    (105) McMeekin, T. L.; Cohn, E. J.; Wear, J. H. Studies in the Physical Chemistry of Amino Acids, Peptides and Related Substances. VII. A Comparison of the Solubility of Amino Acids, Peptides and Their Derivatives. J. Am. Chem. Soc. 1936, 58, 2173–2181.
    (106) Cohn, E. J.; Edsall, J. T. Proteins, Amino Acids, and Peptides as Ions and Dipolar Ions; Reinhold Publishing Corporation: New York, 1943.
    (107) Robinson, D. R.; Jencks, W. P. The Effect of Compounds of the Urea-Guanidinium Class on the Activity Coefficient of Acetyltetraglycine Ethyl Ester and Related Compounds. J. Am. Chem. Soc.1965, 87, 2462–2470.
    (108) Wang, A.; Bolen, D. W. Naturally Occurring Protective System in Urea-rich Cells: Mechanism of Osmolyte Protection of Proteins against Urea Denaturation. Biochemistry 1997, 36, 9101–9108.
    (109) Ben-Naim, A. Standard Thermodynamics of Transfer. Uses and Misuses. J. Phys. Chem. 1978, 82, 792–803.
    (110) Talukdar, H.; Rudra, S.; Kundu, K. K. Thermodynamics of Transfer of Glycine, Diglycine, and Triglycine from Water to Aqueous Solutions of Urea, Glycerol, and Sodium Nitrate. Can. J. Chem. 1988, 66, 461–468.
    (111) Halford, S. E.; Goodall, A. J. Modes of DNA Cleavage by the EcoRV Restriction Endonuclease. Biochemistry 1988, 27, 1771–1777.
    (112) Good, N. E.; Winget, G. D.; Winter, W.; Connolly, T. N.; Izawa, S.; Singh, R. M. M. Hydrogen Ion Buffers for Biological Research. Biochemistry 1966, 5, 467–477.
    (113) Ferguson, W. J.; Braunschweiger, K. I.; Braunschweiger, W. R.; Smith, J. R.; McCormick, J. J.; Wasmann, C. C.; Jarvis, N. P.; Bell, D. H.; Good, N. E. Hydrogen Ion Buffers for Biological Research. Anal. Biochem. 1980, 104, 300–310.
    (114) Gomori, G. Preparation of Buffers for Use in Enzyme Studies. Methods Enzymol. 1955, 1, 138–146.
    (115) Brzozowski, A. M.; Lawson, D. M.; Turkenburg, J. P.; Bisgaard-Frantzen, H.; Svendsen, A.; Borchert, T. V.; Dauter, Z.; Wilson, K. S.; Davies, G. J. Structural Analysis of a Chimeric Bacterial R-Amylase. High-Resolution Analysis of Native and Ligand Complexes. Biochemistry 2000, 39, 9099–9107.
    (116) Knapp, S.; Ru‥diger, A.; Antranikian, G.; Ladenstein, R. Crystallization and Preliminary Crystallographic Analysis of an Amylopullulanase from the Hyperthermophilic Archaeon Pyrococcus Woesei. Proteins 1995, 23, 595–597.
    (117) Andrykovitch, M.; Guo, W.; Karen, M. R.; Gu, Y.; Anderson, D. E.; Reshetnikova, L. S.; Knowlton, J. R.; Waugh, D. S.; Ji, X. Crystallization and Preliminary x-Ray Diffraction Studies of NusG, a Protein Shared by the Transcription and Translation Machines. Acta Crystallogr. D Biol. Crystallogr. 2002, 58, 2157–2158.
    (118) Campos, A.; Matsumura, P.; Volz, K. Crystallization and Preliminary x-Ray Analysis of FlhD from Escherichia Coli. J. Struct. Biol. 1998, 123, 269–271.
    (119) Iguer-Ouada, M.; Verstegen, J. P. Long Term Preservation of Chilled Canine Semen: Effect of Commercial and Laboratory Prepared Extenders. Theriogenology 2000, 55, 671–84.
    (120) Tsutsui, T.; Hase, M.; Hori, T.; Ito, T.; Kawakami, E. Effects of Orvus ES Paste on Canine Spermatozoal Longevity after Freezing and Thawing. J. Vet. Med. Sci. 2000, 62, 533–535.
    (121) Silva, A. R.; Cardoso, R. C. S.; Uchoa, D. C.; Silva, L. D. M. Effect of Tris-buffer, Egg Yolk and Glycerol on Canine Semen Freezing. Vet. J. 2002, 164, 244–246.
    (122) Lesignoli, F.; Germini, A.; Corradini, R.; Sforza, S.; Galaverna, G.; Dossena, A.; Marchelli, R. Recognition and Strand Displacement of DNA Oligonucleotides by Peptide Nucleic Acids (PNAs). Highperformance Ion Exchange Chromatographic Analysis. J. Chromatogr. A 2001, 922, 177–185.
    (123) Smith, Jr. W. H.; Hood, D. W. pH Measurement in the Ocean: A Sea Water Secondary Buffer System. In Recent Researches in the Fields of Hydrosphere, Atmosphere and Nuclear Geochemistry; Miyake, Y., Koyama, T., Eds.; Maruzen Company, Ltd: Tokyo, Japan, 1964; pp 185-202.
    (124) Hansson, I. A New Set of pH Scales and Standard Buffers for Sea Water. Deep-Sea Res. 1973, 20, 479–491.
    (125) Ramette, R. W.; Culberson, C. H.; Bates, R. G. Acid-Base Properties of Tris(Hydroxymethyl)aminomethane (Tris) Buffers in Seawater from 5 to 40°C. Anal. Chem. 1977, 49, 867–870.
    (126) Dickson, A. G. pH Buffers for Sea Water Media Based on the Total Hydrogen Ion Concentration Scale. Deep-Sea Res. 1993, 40, 107–118.
    (127) DelValls, T. A.; Dickson, A. G. The pH of Buffers Based on 2-Amino-2-hydroxymethyl-1,3-propanediol (Tris) in Synthetic Sea Water. Deep-Sea Res. 1998, 45, 1541–1554.
    (128) Whitfield, M.; Butler, R. A.; Covington, A. K. The Determination of pH in Estuarine Waters: I. Definition of pH Scales and the Selection of Buffers. Oceanologica Acta 1985, 8, 423–432.
    (129) Millero, F. J.; Zhang, J.-Z.; Fiol, S.; Sotolongo, S.; Roy, R. N.; Lee, K.; Mane, S. The Use of Buffers to Measure the pH of Seawater. Mar. Chem. 1993, 44, 143–152.
    (130) Clayton, T. D.; Byrne, R. H. Spectrophotometric Seawater pH Measurements: Total Hydrogen Ion Concentration Scale Calibration of m-Cresol Purple and At-Sea Results. Deep-Sea Res. 1993, 40, 2115–2129.
    (131) Zhang, H.; Byrne, R. H. Spectrophotometric pH Measurements of Surface Seawater at In-Situ Conditions: Absorbance and Protonation Behavior of Thymol Blue. Mar. Chem. 1996, 52, 17–25.
    (132) Nakaguchi, Y.; Nemzer, B. V.; Dickson, A. G. The Calibration of Indicator Dyes for Seawater pH Measurements. In 6th International Carbon Dioxide Conference, Sendai, Japan, 2001; pp 631-634.
    (133) Lee, J. J.; Ford, W.T. Acceleration of o-Iodosobenzoate-Catalyzed Hydrolysis of p-Nitrophenyl Diphenyl Phosphate by Cationic Polymer Colloids. J. Am. Chem. Soc. 1994,116, 3753–3759.
    (134) Nurok, D.; Frost, M. C.; Chenoweth, D. M. Separation Using Planar Chromatography with Electroosmotic Flow. J. Chromatogr. A 2000, 903, 211–217.
    (135) Choi, H.; Kim, Y. Capillary Electrophoresis of Single-Stranded DNA. Bull. Korean Chem. Soc. 2003, 24, 943–947.
    (136) Chiesl, T. N.; Shi, W.; Barron, A. E. Poly(acrylamide-co-alkylacrylamides) for Electrophoretic DNA Purification in Microchannels. Anal. Chem. 2005, 77, 772–779.
    (137) Koch, D. J.; Rückert, C.; Key, D. A.; Mix, A.; Pühler, A.; Kalinowski, J. Role of the Ssu and Seu Genes of Corynebacterium Glutamicum ATCC 13032 in Utilization of Sulfonates and Sulfonate Esters as Sulfur Sources. Appl. Environ. Microbiol. 2005, 71, 6104–6114.
    (138) Valensi, G. Definitions Thermodynamique et Operatoire des Act! Vites Ioniques. Applications aux Mesures de pH. Pure and Appl. Chem. 1972, 31, 547–567.
    (139) Harned, H. S.; Owen, B. B. The Physical Chemistry of Electrolytic Solutions. Third ed.; Reinhold: New York, 1958.
    (140) Millero, F. J. The Molal Volumes of Electrolytes. Chem. Rev. 1971, 71, 147–176.
    (141) Rogers, P. S., Pitzer, K. S. Volumetric Properties of Aqueous Sodium-Chloride Solutions. J. Phys. Chem. Ref. Data 1982, 11, 15–99.
    (142) Gibson, R. E., Loeffler, O.H. Pressure-Volume-Temperature Relations in Solutions. VIII. The Behaviour of Some Solutions of Electrolytes in Water. Ann. NY Acad. Sci. 1949, 51, 727–752.
    (143) Vaslow, F. The Apparent Molal Volumes of the Alkali Metal Chlorides in Aqueous Solution and Evidence for Salt-Induced Structure Transitions. J. Phys. Chem. 1966, 70, 2286–2294.
    (144) Franks, F.; Smith, H. T. Apparent Molal Volumes and Expansibilities of Electrolytes in Dilute Aqueous Solution. Trans. Faraday Soc. 1967, 63, 2586–2598.
    (145) Vaslow, F. The Apparent Molal Volumes of the Lithium and Sodium Halides. Critical-Type Transitions in Aqueous Solution. J. Phys. Chem. 1969, 73, 3745–3750.
    (146) Silvester, L. F.; Pitzer, K. S. Thermodynamics of Electrolytes. 8. High-Temperature Properties, Including Enthalpy and Heat Capacity, with Application to Sodium Chloride. J. Phys. Chem. 1977, 81, 1822–1828.
    (147) Krumgalz, B. S.; Pogorelsky, R.; Iosilevskii, Ya. A.; Weiser, A.; Pitzer, K. S. Ion Interaction Approach for Volumetric Calculations for Solutions of Single Electrolytes at 25 °C. J. Solution Chem. 1994, 23, 849–875.
    (148) Krumgalz, B. S.; Pogorelsky, R.; Pitzer, K. S. Volumetric Properties of Single Aqueous Electrolytes from Zero to Saturation Concentration at 298.15 K Represented by Pitzer's Ion-Interaction Equations. J. Phys. Chem. Ref. Data 1996, 25, 663–689.
    (149) Apelblat, A.; Manzurola, E. Volumetric Properties of Water, and Solutions of Sodium Chloride and Potassium Chloride at Temperatures from T = 277.15 K to T = 343.15 K at Molalities of (0.1, 0.5, and 1.0) mol‧kg-1. J. Chem. Thermodyn. 1999, 31, 869–893.
    (150) Dedick, E. A., Hershey, J. P.; Sotolongo, S.; Stade, D. J.; Millero, F. J. The PVT Properties of Concentrated Aqueous Electrolytes IX. The Volume Properties of KCl and KSO and Their Mixtures with NaCl and NaSO as a Function of Temperature. J. Solution Chem. 1990, 19, 353–374.
    (151) Gates, J. A.; Wood, R. H. Densities of Aqueous Solutions of NaCl, MgCl, KCl, NaBr, LiCl, and CaCl from 0.05 to 5.0 mol‧kg-1 and 0.1013 to 40 MPa at 298.15 K. J. Chem. Eng. Data 1985, 30, 44–49.
    (152) Badarayani, R.; Kumar, A. Densities and Speed of Sound of Glycine in Concentrated Aqueous NaBr, KCl, KBr and MgCl at T = 298.15 K. J. Chem. Thermodyn. 2003, 35, 897–908.
    (153) Chen, C. -T. A.; Chen, J. H.; Millero, F. J. Densities of NaCl, MgCl, NaSO, and MgSO Aqueous Solutions at 1 atm from 0 to 50 °C and from 0.001 to 1.5 m (molality). J. Chem. Eng. Data 1980, 25, 307–310.
    (154) Soto, A.; Arce, A.; Khoshkbarchi, M. K. Experimental Data and Modelling of Apparent Molar Volumes, Isentropic Compressibilities and Refractive Indices in Aqueous Solutions of Glycine + NaCl. Biophys. Chem. 1998, 74, 165–173.
    (155) Apelblat, A.; Manzurola, E. Volumetric and Thermal Properties of Some Aqueous Electrolyte Solutions: Part 5. Potassium Bromide and Potassium Iodide 0.1, 0.5, and 1.0 mol‧kg-1 Solutions at Temperatures from T = 278.15 to 338.15 K. J. Mol. Liq. 2005, 118, 77–88.
    (156) Venkatesu, P.; Lee, M.-J.; Lin, H.-M. Densities of Aqueous Solutions Containing Model Compounds of Amino Acids and Ionic Salts at T = 298.15 K. J. Chem. Thermodyn. 2007, 39, 1206–1216.
    (157) Wouters, J.; Stalke, D. TAPSO at Low Temperature. Acta Cryst. C 1996, 52, 1684–1686.
    (158) Wouters, J.; Häming, L.; Sheldrick, G. HEPES. Acta Cryst. C 1996, 52, 1687–1688.
    (159) Kirkwood, J. G. Theory of Solutions of Molecules Containing Widely Separated Charges with Special Application to Zwitterions. J. Chem. Phys. 1934, 2, 351–361.
    (160) Neuberger, A. Dissociation Constants and Structures of Zwitterions. Proc. R. Soc. London A 1937, 158, 68–96.
    (161) Robinson, R. A.; Stokes, R. H. Electrolyte Solutions, 2nd ed.; Dover: Mineola, NY, 2002.
    (162) Roy, R. N.; Robinson, R. A.; Bates, R. G. Thermodynamics of the Two Dissociation Steps of N-tris(Hydroxymethyl)methylglycine (“Tricine”) in Water from 5 to 50°C. J. Am. Chem. Soc. 1973, 95, 8231–8235.
    (163) Cecchi, T.; Cecchi, P. The Dipole Approach in the Ion-Interaction Chromatography of Zwitterions: Use of a Potential Approximation to Obtain a Simplified Retention Equation. Chromatographia 2002, 55, 279–282.
    (164) Cecchi, T.; Pucciarelli, F.; Passamonti, P. Ion-Interaction Chromatography of Zwitterions. The Fractional Charge Approach to Model the Influence of the Mobile Phase Concentration of the Ion-Interaction Reagent. Analyst 2004, 129, 1037–1046.
    (165) Marcus, Y. On the Activity Coefficients of Charge-symmetrical Ion Pairs. J. Mol. Liq. 2006, 123, 8–13.
    (166) Auton, M.; Bolen, D. W.; Rösgen, J. Structural Thermodynamics of Protein Preferential Salvation: Osmolyte Salvation of Proteins, Amino Acids, and Peptides. Proteins: Struct., Funct., Bioinf. 2008, 73, 802–812.
    (167) Belibagli, K.; Agranci, E. Viscosities and Apparent Molar Volumes of Some Amino Acids in Water and in 6 M Guanidine Hydrochloride at 25°C. J. Solution Chem. 1990, 19, 867–882.
    (168) Ford, T. D.; Call, T. G.; Origlia, M. L.; Stark, M. A.; Woolley, E. M. Apparent Molar Volumes and Apparent Molar Heat Capacities of Aqueous 2-Amino-2-hydroxymethyl-propan-1,3-diol (Tris or THAM) and THAM Plus Equimolal HCl. J. Chem. Thermodyn. 2000, 32, 499–519.
    (169) Friedman, H. L.; Krishnan, C. V. Water: A Comprehensive Treatise; Franks, F., Ed.; Plenum: New York, 1990; Vol. 35, pp 87–93.
    (170) Kaushal, V; Barnes, L. D. Effect of Zwitterionic Buffers on Measurement of Small Masses of Protein with Bicinchoninic Acid. Anal. Biochem. 1986, 157, 291– 294.
    (171) Thiela, T.; Liczkowskib, L.; Bissena, S. T. New Zwitterionic Butanesulfonic Acids that Extend the Alkaline Range of Four Families of Good Buffers: Evaluation for Use in Biological Systems. J. Biochem. Biophys. Methods 1998, 37, 117–129.
    (172) Blatny, P.; Kvasnicka, F.; Kenndler, E. Trace Determination of Iron in Water at the μg/l Level by On-Line Coupling of Capillary Isotachophoresis and Capillary Zone Electrophoresis with UV Detection of the EDTA-Fe(III) Complex. J. Chromatogr.-A 1997, 757, 297–302.
    (173) Nagira, K.; Hayashida, M.; Shiga, M.; Sasamoto, K.; Kina, K.; Osada, K.; Sugahara, T.; Murakami, H. Effects of Organic pH Buffers on a Cell Growth and an Antibody Production of Human-human Hybridoma HB4C5 Cells in a Serum-free Culture. Cytotechnology 1995, 17, 117–125.
    (174) Vilariño, A.; Frey, B.; Shüepp, H. MES [2-(N-morpholine)-ethane sulphonic acid] Buffer Promotes the Growth of External Hyphae of the Arbuscular Mycorrhizal Fungus Glomus Intraradices in an Alkaline Sand. Biol. Fertil. Soils 1997, 25, 79–81.
    (175) Wolf, C.; Spence, P. L.; Pirkle, W. H.; Derrico, E. M.; Cavender, D. M.; Rozing, G. P. Enantioseparations by Electrochromatography with Packed Capillaries. J. Chromatogr.-A 1997, 782, 175–179.
    (176) Cifuentes, A.; Rodriguez, M. A.; Garcia-Montelongo, F. J. Separation of Basic Proteins in Free Solution Capillary Electrophoresis: Effect of Additive, Temperature and Voltage. J. Chromatogr.-A 1996, 742, 257–266.
    (177) Chiari, M.; Dell'Orto, N.; Casella, L. Separation of Organic Acids by Capillary Zone Electrophoresis in Buffers Containing Divalent Metal Cations. J. Chromatogr.-A 1996, 745, 93–101.
    (178) Rieger, C. E.; Lee, J.; Turnbull, J. L. A Continuous Spectrophotometric Assay for AspartateTranscarbamylase and ATPases. Anal. Biochem. 1997, 246, 86–95.
    (179) Carr, G. R. Use of Zwitterionic Hydrogen Ion Buffers in Media for Growth Tests of Glomus Caledonium Soil. Biol. Biochem. 1991, 23, 205–206.
    (180) Haskins, W. E.; Drake, L. R.; Rayson, G. D. Effect of Solution pH and Barium(II) on Europium(III) Determination Using Arsenazo III. Can. J. Appl. Spectrosc. 1996, 41, 106–108.
    (181) Parthasarathy, N.; Buffle, J. Capabilities of Supported Liquid Membranes for Metal Speciation in Natural Waters: Application to Copper Speciation. Anal. Chim. Acta 1994, 284, 649–659.
    (182) Plantner, J. J. A Microassay for Proteolytic Activity. Anal. Biochem. 1991, 195, 129–131.
    (183) Weilke, C.; Brinkmann, T.; Kleesiek, K. Determination of Xylosyltransferase Activity in Serum with Recombinant Human Bikunin as Acceptor. Clin. Chem. 1997, 43, 45–51.
    (184) Rao, V.; Grover, R.; Mehta, A. Isoelectric Focusing of Cells Using Zwitterionic Buffers. Expl. Cel.l Biol. 1979, 47, 360-367.
    (185) Banica, F. G.; Moreira, J. C.; Fogg, A. G. Application of Catalytic Stripping Voltammetry for the Determination of Organic Sulfur Compounds at a Hanging Mercury Drop Electrode: Behaviour of Cysteine, Cystine and N-Acetylcysteine in the Presence of Nickel Ion. Analyst 1994, 119, 309–318.
    (186) Rieger, C. E.; Lee, J.; Turnbull, J. L. Catalytic Cathodic Stripping Voltammetry of Oxidized Glutathione at a Hanging Mercury Drop Electrode in the Presence of Nickel Ion. Anal. Biochem. 1997, 246, 86–95.
    (187) Millero, F. J. The Partial Molal Volumes of Electrolytes in Aqueous Solutions. In Water and Aqueous Solutions; Horne, R. A., ed.; Wiley Interscience: New York, 1972.
    (188) Shahidi, F.; Farrell, P. G. Partial Molar Volumes of Organic Compounds in Water. Part 4. α,ω-Aminocarboxylic Acids. J . Chem. Soc., Faraday Trans. 1978, 174, 858 –868.
    (189) Cabani, S.; Conti, G.; Matteoli, E.; Tiné, M. R. Volumetric Properties of Amphionic Molecules in Water. Part 1. α,ω-Volume Changes in the Formation of Zwitterionic Structures. J. Chem. Soc., Faraday Trans. 1981, 177, 2317–2384.
    (190) Wang, J.; Yan, Z.; Zhuo, K.; Lu, J. Partial Molar Volumes of Some α-Amino Acids in Aqueous Sodium Acetate Solutions at 308.15 K. Biophys. Chemistry 1999, 80, 179–188.
    (191) Wang, J.; Yan, Z.; Lu. J. Effect of Sodium Caproate on the Volumetric and Viscometric Properties of Glycine, DL-α-Alanine, and DL-α-amino-n-Butyric Acid in Aqueous Solutions. J. Chem. Thermodyn. 2004, 36, 281–288.
    (192) Banipal, T. S.; Kaur, D.; Banipal, P. K. Apparent Molar Volumes and Viscosities of Some Amino Acids in Aqueous Sodium Acetate Solutions at 298.15 K. J. Chem. Eng. Data 2004, 49,1236–1246.
    (193) Sinha, B.; Dakua, V. K.; Roy, M. N. Apparent Molar Volumes and Viscosity B-Coefficients of Some Amino Acids in Aqueous Tetramethylammonium Iodide Solutions at 298.15 K. J. Chem. Eng. Data 2007, 52, 1768–1772.
    (194) Yuan, Q.; Li, Z. -F.; Wang, B. -H. Partial Molar Volumes of L-Alanine, DL-Serine, DL-Threonine, L-Histidine, Glycine, and Glycylglycine in Water, NaCl, and DMSO Aqueous Solutions at T = 298.15 K. J. Chem. Thermodyn. 2006, 38, 20–23.
    (195) Singh, M.; Pandey, M.; Yadav, R. K.; Verma, H.S. Thermodynamic Studies of Molar Volume, Pair and Triplet Interactions at Increasing Side Chain Length of α-Amino Acids in Aqueous Potassium Chloride Solutions at Different Concentration and 310.15 K. J. Mol. Liquids 2007, 135, 42–45.
    (196) Wang, J.; Yan, Z.; Zhou, K.; D. Liu. Standard Volumes of Transfer for Some α-Amino Acids from Water to Aqueous Sodium Acetate Solutions at 298.15 K. Z. Phys. Chem. 2000, 214,333–345.
    (197) Desnoyers, J. E.; Arel, M.; Perron, G.; Jolicoeur, C. Apparent Molal Volumes of Alkali Halides in Water at 25°C. Influence of Structural Hydration Interactions on the Concentration Dependence. J. Phys. Chem. 1969, 73, 3346–3351.
    (198) Conway, B. E.; Verrall, R. E. Partial Molar Volumes and Adiabatic Compressibilities of Tetraalkylammonium and Aminium Salts in Water. I. Compressibility Behavior. J. Phys. Chem. 1966, 70, 3952–3961.
    (199) Shahidi, F.; Farrell, P. G. Partial Molar Volumes of Organic Compounds in Water. VI. α,ω-Diaminoalkane Hydrochlorides. J. Solution Chem. 1978, 7, 549–559.
    (200) Iqbal, M.; Verral, R. E. Partial Molar Volumes and Adiabatic Compressibilities of Glycyl Peptides at 25°C. J. Phys. Chem. 1987, 91, 967–971.
    (201) Rees, D. C. Experimental Evaluation of the Effective Dielectric Constant of Proteins. J. Mol. Biol. 1980, 141, 323–331.
    (202) Bastian, M.; Sigel, H. On the Metal Ion Binding Properties of Orotidine. Inorg. Chim. Acta 1990, 178, 249–257.
    (203) Cohn, E. J.; McMeekin, T. L.; Edsall, J. T.; Weare, J. H. Studies in the Physical Chemistry of Amino Acids, Peptides and Related Substances. II. The Solubility of α-Amino Acids in Water and in Alcohol-Water Mixtures. J. Am. Chem. Soc. 1934, 56, 2270-2282.
    (204) Cohn, E. J. Influence of the Dielectric Constant in Biochemical Systems. Chem. Rev., 1936, 19, 241-273.
    (205) Gordy, W. The Infrared Absorption Spectra of Dioxane-Water Mixtures. J. Chem. Phys. 1936, 4, 769–771.
    (206) Choppjn, G. R.; Violante, M. R. Near-Infrared Studies of the Structure of Water. III. Mixed Solvent Systems. J. Chem. Phys. 1972, 56, 5890–5898.
    (207) Fratiello, A.; Luongo, J. P. Infrared and Nuclear Magnetic Resonance Hydrogen-Bonding Study of Dioxane and Pyridine in Aqueous Mixtures. J. Am. Chem. Soc. 1963, 85, 3072–3075.
    (208) Clemett, C. J. Study of Proton Spin-Lattice Relaxation in the Water-Dioxan System. J. Chem. Soc. A 1969, 85, 761–765.
    (209) Hindman, J. C.; Svirmickas, A.; Wood, M. Deuteron Spin-Lattice Relaxation of D2O in Organic Solvents. J. Phys. Chem. 1968, 72, 4188–4193.
    (210) Fratiello, A.; Douglas, D. C. NMR Shift and Diffusion Study of Dioxane-H2O and Pyridine-H2O Mixtures. J. Mol. Spectrosc. 1963, 11, 465–482.
    (211) Clemett, J. Nuclear Magnetic Resonance Study of Water Dissolved in Some Cyclic Ethers. J. Chem. Soc. A 1969, 455–458.
    (212) Clemett, J. The Self-Diffusion Coefficients of Water and Dioxan in the Water-Dioxan System. J. Chem. Soc. A 1969, 458–460.
    (213) Tourky, A. R.; Rizk, H. A.; Girgis, Y. M. The Dielectric Properties of Water in Dioxane. J. Phys. Chem. 1961, 65, 40–42.
    (214) Garg, S. K.; Symyth, C. P. Microwave Absorption and Molecular Structure in Liquids. LXVI. The Dielectric Relaxation of the Water-Dioxane System and the Structure of Water. J. Chem. Phys. 1965, 43, 2959–2965.
    (215) Clemett, C. J.; Forest, E.; Smyth, C. P. Microwave Absorption and Molecular Structure in Liquids. LVI. Dielectric Behavior of Water and Heavy Water in Dioxane. J. Chem. Phys. 1963, 40, 2133–2128.
    (216) Cennamo, F.; Tartaglione, E. On the X-Ray Diffraction in Water-Dioxane and Water-Ethyl Alcohol Mixtures. Il Nuovo Cimento 1959, 11, 401–409.
    (217) Fauconnier, C.; Harrand. M. Raman: Spectrum of Dioxane, Effect of H2O. Ann. Phys. (Paris) 1956, 1, 5–9.
    (218) Takamuku, T.; Nakamizo, A.; Tabata, M.; Yoshida, K.; Yamaguchi, T.; Otomo, T. Large-Angle X-Ray Scattering, Small-Angle Neutron Scattering, and NMR Relaxation Studies on Mixing States of 1,4-Dioxane-Water, 1,3-Dioxane-Water, and Tetrahydrofuran-Water Mixtures. J. Mol. Liquids 2003, 103-104, 143–159.
    (219) Bakó, I.; Pálikás, G.; Dore, J. C.; Fischer, H. E.; Structural Studies of a Water/Dioxane Mixture by Neutron Diffraction with Hydrogen/Deuterium Substitution. Chem. Phys. Lett. 1999, 303, 315–319.
    (220) Chang, H.-C.; Jiang, J.-C.; Chuang, C.-W.; Lin, S. H. Evidence for Hydrogen Bond-Like C–H–O Interactions in Aqueous 1,4-Dioxane Probed by High Pressure. Chem. Phys. Lett. 2004, 397, 205-210.
    (221) Takamuku, T.; Yamaguchi, A.; Tabata, M.; Nishi, N.; Yoshida, K.; Wakita, H.; Yamaguchi, T. Structure and Dynamics of 1,4-Dioxane-Water Binary Solutions Studied by X-Ray Diffraction, Mass Spectrometry, and NMR Relaxation. J. Mol. Liquids 1999, 83, 163–177.
    (222) Takamuku, T.; Yamaguchi, A.; Matsuo, D.; Tabata, M.; Yamaguchi, T.; Otomo, T.; Adachi, T. NaCl-Induced Phase Separation of 1,4-Dioxane−Water Mixtures Studied by Large-Angle X-Ray Scattering and Small-Angle Neutron Scattering Techniques. J. Phys. Chem. B 2001, 105, 10101–10110.
    (223) Paruta, A. N.; Sciarrone, B. J.; Lordi, N. G. Solubility of Salicylic Acid as
    a Function of Dielectric Constant. J. Pharm. Sci. 1964, 53, 1349–1353.
    (224) Paruta, A. N.; Sciarrone, B. J.; Lordi, N. G. Solubility Profiles for the Xanthines in Dioxane-Water Mixtures. J. Pharm. Sci. 1965, 54, 838–841.
    (225) Paruta, A. N. Solubility of the Parabens in Dioxane–Water Mixtures. J. Pharm. Sci. 1969, 58, 204–206.
    (226) Peña, M. A.; Bustamante, P.; Escalera, B.; Reíllo, A.; Bosque-Sendra, J. M. Solubility and Phase Separation of Benzocaine and Salicylic Acid in 1,4-Dioxane–Water Mixtures at Several Temperatures. J. Pharm. Biomed. Anal. 2004, 36, 571–578.
    (227) Perrin, D. D.; Dempsey, B. Buffers for pH and Metal Ion Control. John Wiley & Sons, Inc.: NY, 1974.
    (228) Uversky, V. N.; Permyakav, E. A. Conformational Stability, Size, Shape and Surface of Protein Molecules. Nova Science Publisher: New York, 2007.
    (229) Ebel, C.; Eisenberg, H.; Ghirlando, R. Probing Protein-Sugar Interactions. Biopysical J. 2000, 78, 385–393.
    (230) Jancarik, J.; Kim, S.-H. Sparse Matrix Sampling: A Screening Method for Crystallization of Proteins. J. Appl. Cryst. 1991, 24, 409–411.
    (231) Newman, J. Novel Buffer Systems for Macromolecular Crystallization. Acta Cryst. D 2004, 60, 610–612.
    (232) Righetti, P. G.; Magnusdottir, S.; Gelfi, C.; Perduca, M. Behaviour of Inorganic and Organic Cations in the Debye–Hückel Layer of DNA. J. Chromatogr. A 2001, 920, 309–316.
    (233) Arakawa, T.; Timasheff, S. N. The Stabilization of Proteins by Osmolytes. Biophys. J. 1985, 47, 411–414.
    (234) Hare, P. D.; Cress, W. A.; Van-Staden, J. Dissecting the Roles of Osmolyte Accumulation during Stress. Plant Cell Environ. 1998, 21, 535–553.
    (235) Aspinall, D.; Paleg, L. Physiology and Biochemistry of Draught Resistance in Plants. Academic Press: Sydney, 1981; pp. 205–241.
    (236) Loomis, S.; Carpenter, J. F.; Crowe, J. H. Identification of Strombine and Taurine as Cryoprotectants in the Intertidal Bivalve. Biochim. Biophys. Acta 1988, 943, 113–118.
    (237) Loomis, S.; Carpenter, J. F.; Anchordoguy, T. J.; Crowe, J. H.; Branchini, B. R. Cryoprotective Capacity of End Products of Anaerobic Metabolism. J. Exp. Zool. 1989, 252, 9–15.
    (238) Yancey, P.; Clark, M.; Hand, S.; Bowlus, R.; Somero, G. Living with Water Stress: Evolution of Osmolyte Systems. Science 1982, 217, 1214–1222.
    (239) Hochachka, P. W.; Somero, G. N. Water-Solute Adaptations: The Evolution and Regulation of Biological Solutions. Princeton University Press: Princeton, NJ, 1984.
    (240) Gekko, K.; Timasheff, S. N. Mechanism of Protein Stabilization by Glycerol: Preferential Hydration in Glycerol-Water Mixtures. Biochemistry 1981, 20, 4667–4676.
    (241) Arakawa, T.; Timasheff, S. N. Preferential Interactions of Proteins with Solvent Components in Aqueous Amino Acid Solutions. Arch. Biochem. Biophys. 1983, 244, 169–177.
    (242) Lee, L. L. Y.; Lee, J. C. Thermal Stability of Proteins in the Presence of Poly (ethylene glycols). Biochemistry 1987, 26, 7813–7819.
    (243) Cioci, F. Effect of Surface Tension on the Stability of Heat-Stressed Proteins: A Molecular Thermodynamic Interpretation. J. Phys. Chem. 1996, 100, 17400–17405.
    (244) Anjum, F.; Rishi, V.; Ahmad F. Compatibility of Osmolytes with Gibbs Energy of Stabilization of Proteins. Biochim. Biophys. Acta 2000, 1476, 75–84.
    (245) Quan, L.; Wei, D.; Jiang, X.; Liu, Y.; Li, Z.; Li, N.; Li, K.; Liu, F.; Lai, L. Resurveying the Tris Buffer Solution: The Specific Interaction between Tris(hydroxymethyl)aminomethane and Lysozyme. Anal. Biochem. 2008, 378, 144–150.
    (246) US pat., 6551992, 2003.
    (247) Narhi, L. O.; Philo, J. S.; Sun, B.; Chang, B. S.; Arakawa, T. Reversibility of Heat-Induced Denaturation of the Recombinant Human Megakaryocyte Growth and Development Factor. Pharm. Res. 1999, 16, 799–807.
    (248) Zhu, L.; Zhang, X. J .; Wang, L. Y.; Zhou, J. M.; Perrett, S. Relationship between Stability of Folding Intermediates and Amyloid Formation for the Yeast Prion Ure2p: A Quantitative Analysis of the Effects of pH and Buffer System. J. Mol. Biol. 2003, 328, 235–254.
    (249) Pace, C. N. Determination and Analysis of Urea and Guanidinium Hydrochloride Denaturation Curves. Methods Enzymol. 1986, 131, 266–280.
    (250) Myers, J. K.; Pace, C. N.; Scholtz, J. M. Denaturant m-Values and Heat-Capacity Changes: Relation to Changes in Accessible Surface-Areas of Protein Unfolding. Protein Sci. 1995, 4, 2138–2148.
    (251) Zou, Q.; Habermann-Rottingaus, S. M.; Murphy, K. P. Urea Effects on Protein Stability: Hydrogen Bonding and the Hydrophobic Effect. Proteins 1998, 31, 107–115.
    (252) Kita, Y.; Arakawa, T.; Lin, T.-Y.; Timasheff, S. N. Contribution of the Surface Free-Energy Perturbation to Protein Solvent Interactions. Biochemistry 1994, 33, 15178–15189.
    (253) Makhatadze, G. I.; Privalov, P. L. Protein Interactions with Urea and Guanidinium Chloride: A Calorimetric Study. J. Mol. Biol. 1992, 226, 491–505.
    (254) Scholtz, J. M.; Barrick, D.; York, E. J.; Stewart, J. M.; Baldwin, R. L. Urea Unfolding of Peptide Helices as a Model for Interpreting Protein Unfolding. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 185–190.
    (255) Venkatesu, P.; Lee, M. J.; Lin, H. M. Counteracting Effects of Trimethylamine N-Oxide and Betaine on the Interactions of Urea with Zwitterionic Glycine Peptides. Thermochim. Acta. 2009, 491, 20–28.
    (256) Lapanje, S.; Skerjanc, J.; Glavnik, S.; Zibret, S. Thermodynamic Studies of the Interactions of Guanidinium Chloride and Urea with Some Oligoglycines and Oligoleucines. J. Chem. Thermodyn. 1978, 10, 425-433.
    (257) Sun, M..; Chen, J.; Liu, X. H.; Zhao, Y. F. Molecular Interaction Modeling of Ser-His Dipeptide and Buffers. J. Mol. Struct. 2004, 668, 47–49.
    (258) Schmitz, K. S. An Introduction to Dynamic Light Scattering by Macromolecules. Academic Press: New York, 1990.
    (259) Löf, D.; Schillén, K.; Jönsson, B.; Evilevitch, A. Dynamic and Static Light Scattering Analysis of DNA Ejection from the Phage . Phys. Rev. E 2007, 76, 011914 (11).
    (260) Picó, G. A. Thermodynamic Features of the Thermal Unfolding of Human Serum Albumin. Int. J. Biol. Macromol. 1997, 20, 63–73.
    (261) Flora, K.; Brennan, J. D.; Baker, G. A.; Doody, M. A.; Bright, F. V. Unfolding of Acrylodan-Labeled Human Serum Albumin Probed by Steady-State and Time-Resolved Fluorescence Methods. Biophys. J. 1998, 75, 1084–1096.
    (262) Mitra, R. K.; Sinha, S. S.; Pal, S. K. Hydration in Protein Folding: Thermal Unfolding/Refolding of Human Serum Albumin. Langmuir 2007, 23, 10224–10229.
    (263) Pecora, R. Dynamic Light Scattering. Plenum Press: New York, 1985.

    QR CODE