簡易檢索 / 詳目顯示

研究生: 徐子翔
Tzu-hsiang Hsu
論文名稱: 可縮放介面研究:針對不同年齡使用者運用掐捏手勢操作調查顯控比、顯示密度與顯示尺寸對最適目標大小之影響
Investigating the Effects of Control-Display Gain, Display Density and Display Size on the Most Appropriate Target Size using Pinch Gestural Operations for Young and Elder Users - A Study on Zoomable Interfaces
指導教授: 林承哲
Cheng-jhe Lin
口試委員: 林久翔
Chiu-hsiang Lin
林瑞豐
Jui-feng Lin
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 57
中文關鍵詞: 目標按鍵大小年齡縮放介面顯示密度控制顯示增益比
外文關鍵詞: target size, age, zoomable interface, display density, control display gain
相關次數: 點閱:266下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為透過使用者測試的方法,瞭解不同年齡層的使用者以掐捏手勢在多點觸控螢幕上進行縮放操作時目標顯示的密度、螢幕尺寸以及控制/顯示增益(C/D gain) 對於最適目標尺寸的效應以及目標點選的績效影響。
    本研究募集了20位使用者(10位年輕人和10位老年人),在3種尺寸(5寸、7寸、10寸)的觸控螢幕上進行縮放目標按鍵大小並點選的實驗。實驗中設計了3組不同動態的控制顯示增益(C/D gain=0.5、1、2)條件、4種不同目標顯示密度(DIV=0、0.5、1、2),並在各種條件下收集最適目標尺寸大小(MATS),並與偏離值(Deviation)和操作時間(Time)進行後續的分析。
    實驗結果顯示,MATS的平均大小約為5.5mm。MATS大小根據不同年齡層,年輕人約為4.1mm、老年人約為6.9mm。我們發現MATS在7寸的螢幕上最小(5.23mm)、在10寸的螢幕上最大(5.66mm),C/D gain愈快、目標顯示密度愈大則MATS愈大;另外MATS大小與偏離值呈現正相關。在實驗結果中不同年齡操作時間的差異不顯著,顯示可縮放界面改善了高齡者的時間操作績效。本研究的結果可提供觸控介面工程師/設計師,在不同操作條件下設計按鍵或目標大小作為參考。未來建議在實驗室中,可精確的量測手持距離(觀視距離)與操作時間的組成成分(縮放時間與點選時間),對本研究所提出的假設機制加以驗證。


    Through user experiment, this study aimed to know the effects the Density, Display size, and C/D gain on the Most Appropriate Target Size (MATS) and the performance, from users of different ages using pinch gestures to zoom and click on targets with a zoomable interface on a multi-touch screen.
    Twenty participants (10 young and 10 elder adults) were recruited to perform the zoom-and-click experimental task on portable touch devices of three display sizes (5-inch, 7-inch, 10-inch). The experimental task was carried out under three different C/D gain (CDG=0.5, 1, 0), four kinds of different Density (DIV = 0, 0.5, 1, 2) and two bonus conditions to collect the most appropriate target size (MATS) together with the deviation from the target center (Deviation) and the operating time (Time) for subsequent analysis. The results showed that the average MATS was about 5.5mm. For users of different ages, the MATS for young people was about 4.1mm and for elder people was about 6.9mm, respectively. MATS on 7-inch (5.23mm) display was found to be smallest, while that on 10-inch (5.66mm) display was biggest. And MATS increased significantly with higher CDG and density. Age did not induce significant effects on operation time, meaning the zoomable interface improve the elder person’s time performance.
    The results of this study may provide design guidelines to touch interface engineer/ designer under different conditions for optimal button or target size. Future studies are suggested to accurately measure the handheld distance of devices and divide operating time into zooming and clicking time to verify the hypotheses proposed in this study.

    摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VII 第一章 緒論 1 1.1研究背景與動機 1 1.2 研究目的 3 1.3實驗架構 4 第二章 文獻探討 5 2.1年齡限制 5 2.2控制/顯示增益(C/D gain) 6 2.3目標顯示密度 10 2.4觸控螢幕尺寸大小 11 2.5縮放介面(Zoomable/Scaling interface) 12 2.6小結 15 第三章 研究方法 16 3.1受測者 16 3.2 實驗工作設計 16 3.3實驗儀器與設備 17 3.4 實驗變數 18 3.4.1 自變數(Independent variables) 18 3.4.2依變數(Dependent variables) 21 3.5 實驗流程 23 3.6 統計分析 25 第四章 實驗結果 26 4.1 最適目標按鍵大小(Most Appropriate Target Size, MATS) 26 4.2 Deviation偏離值 34 4.3 Time操作時間 40 第五章 結論與建議 46 5.1 研究結論與討論 46 5.1.1 MATS最適目標大小 47 5.1.2 年齡對使用者績效的影響 47 5.1.3 影響Deviation(偏離值)的因素 48 5.1.4 實驗結果與實驗假設的比較 50 5.3研究限制與未來研究方向 52 參考文獻 54

    1. 李傳房, & 郭辰嘉. (2009). 高齡者使用小型觸控式螢幕之研究. 設計學報 (Journal of Design), 9(4).
    2. 萬欣亭, & 吳志富. (2009). 多點式觸控螢幕之手勢操作研究. (碩士論文), 大同大學.
    3. Accot, J., & Zhai, S. (2001). Scale effects in steering law tasks. Paper presented at the Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Seattle, Washington, USA.
    4. Arnaut, L. Y., & Greenstein, J. S. (1986). Optimizing the touch tablet: The effects of control-display gain and method of cursor control. Human Factors: The Journal of the Human Factors and Ergonomics Society, 28(6), 717-726.
    5. Bederson, B. B. (2011). The promise of zoomable user interfaces. Behaviour & Information Technology, 30(6), 853-866.
    6. Bender, G. T. (1999). Touch screen performance as a function of the duration of auditory feedback and target size. Wichita State University.
    7. Blanch, R., Guiard, Y., & Beaudouin-Lafon, M. (2004). Semantic pointing: improving target acquisition with control-display ratio adaptation. Paper presented at the Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Vienna, Austria.
    8. Brogmus, G. E. (1991). Effects of age and sex on speed and accuracy of hand movements: And the refinements they suggest for Fitts' Law. Paper presented at the Proceedings of the Human Factors and Ergonomics Society Annual Meeting.
    9. Bureau, U. S. C. (2012). Computer and Internet Access in the United States., from https://www.census.gov/hhes/computer/
    10. Casiez, G., et al. (2008). The impact of control-display gain on user performance in pointing tasks. Human–Computer Interaction, 23(3), 215-250.
    11. Chapuis, O. P. D. (2011). Effects of Motor Scale, Visual Scale, and Quantization on Small Target Acquisition Difficult. ACM Trans. Comput.-Hum. Interact., 2011. 18(3): p. 1-32.
    12. Chung, M. K., Kim, D., Na, S., & Lee, D. (2010). Usability evaluation of numeric entry tasks on keypad type and age. International Journal of Industrial Ergonomics, 40(1), 97-105.
    13. Forlines, C., & Shen, C. (2005). DTLens: Multi-user Tabletop Spatial Data Exploration.
    14. Cockburn, A., & Firth, A. (2004). Improving the acquisition of small targets People and Computers XVII—Designing for Society (pp. 181-196): Springer.
    15. Cole, K. J. (1991). Grasp force control in older adults. Journal of Motor Behavior, 23(4), 251-258.
    16. Colle, H., & Hiszem, K. (2004). Standing at a kiosk: effects of key size and spacing on touch screen numeric keypad performance and user preference. Ergonomics, 47(13), 1406-1423.
    17. Drury, G., & Hoffmann, R. (1992). A model for movement time on data-entry keyboards. Ergonomics, 35(2), 129-147.
    18. Francis, K. L., & Spirduso, W. W. (2000). Age Differences in the Expression of Manual Asymmetry. Experimental Aging Research, 26(2), 169-180.
    19. Gartner. (2014). Worldwide Traditional PC, Tablet, Ultramobile and Mobile Phone Shipments Are On Pace to Grow 6.9 Percent., from http://www.gartner.com/newsroom/id/2692318
    20. Jellinek, H. D., & Card, S. K. (1990). Powermice and user performance. Paper presented at the Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
    21. Jenkins, W. L., & Connor, M. B. (1949). Some design factors in making settings on a linear scale. Journal of Applied Psychology, 33(4), 395.
    22. Jin, Z. X., Plocher, T., & Kiff, L. (2007). Touch screen user interfaces for older adults: button size and spacing. Paper presented at the Proceedings of the 4th international conference on Universal access in human computer interaction: coping with diversity, Beijing, China.
    23. Johnsgard, T. (1994). Fitts' Law with a virtual reality glove and a mouse: Effects of gain. Paper presented at the Graphics Interface.
    24. Perlin, K. & Fox, D. (1993). Pad: An Alternative Approach to the Computer Interface.
    25. Kwon, S., Choi, E., & Chung, M. K. (2011). Effect of control-to-display gain and movement direction of information spaces on the usability of navigation on small touch-screen interfaces using tap-n-drag. International Journal of Industrial Ergonomics, 41(3), 322-330.
    26. Lee, S., & Sanford, J. (2012). Gesture interface magnifiers for low-vision users. Paper presented at the Proceedings of the 14th international ACM SIGACCESS conference on Computers and accessibility, Boulder, Colorado, USA.
    27. Galganski, M. E., Fuglevand, A. J., & Enoka, R. M. (1993). Reduced control of motor output in a human hand muscle of elderly subjects during submaximal contractions (Vol. 69).
    28. Malik, S. (2007). An exploration of multi-finger interaction on multi-touch surfaces. (Doctoral dissertation), University of Toronto.
    29. Marquardt, N., Tang, A., & Greenberg, S. (2012). The Fat Thumb: Using the Thumb’s Contact Size for Single-Handed Mobile Interaction.
    30. Oehl, M., Sutter, C., & Ziefle, M. (2007) Considerations on efficient touch interfaces - How display size influences the performance in an applied pointing task. Vol. 4557 LNCS. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (pp. 136-143).
    31. Sena, J. A. (2012). The PC Evolution and Diaspora. CrossTalk, March/April:, 22-26.
    32. Sun, X., Plocher, T., & Qu, W. (2007). An empirical study on the smallest comfortable button/icon size on touch screen Usability and internationalization. HCI and culture (pp. 615-621): Springer.
    33. Vercruyssen, M. (1997). Movement control and speed of behavior. In A. D. F. W. A. Rogers (Ed.), Handbook of human factors and the older adult (pp. 55-86). San Diego, CA, US: Academic Press.
    34. Vogel, D. (2007). Shift: A Technique for Operating Pen-Based Interfaces Using Touch
    35. Wilson, K. S., & Liu. (1995). A comparison of five user interface devices designed for point-of-sale in the retail industry. Paper presented at the Proceedings of the Human Factors and Ergonomics Society Annual Meeting.
    36. Worden, A., Walker, N., Bharat, K., & Hudson, S. (1997). Making computers easier for older adults to use: area cursors and sticky icons. Paper presented at the Proceedings of the ACM SIGCHI Conference on Human factors in computing systems, Atlanta, Georgia, USA.

    無法下載圖示 全文公開日期 2018/01/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE