簡易檢索 / 詳目顯示

研究生: 彭成瑜
Cheng-Yu Peng
論文名稱: 太陽能發電之混合再生能源系統規劃與檢測分析
Planning and Testing Analysis of Hybrid Renewable Energy System for Solar Power Generation
指導教授: 郭政謙
Cheng-Chien Kuo
口試委員: 張宏展
Hong-Chan Chang
陳鴻誠
Hung-Cheng Chen
郭政謙
Cheng-Chien Kuo
黃維澤
Wei-Tzer Huang
李俊耀
Chun-Yao Lee
楊念哲
Nien-Che Yang
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 99
中文關鍵詞: 太陽光電電致發光混合再生能源發電系統儲能均化發電成本靈敏度分析政策
外文關鍵詞: Phtovoltaic, electroluminecence, hybrid renewable energy system, energy storage system, levelized cost of energy, sensitivity analysis, policy.
相關次數: 點閱:231下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 太陽光電(photovoltaics, PV)系統已成為具備可行性的再生能源發電系統,產業估算太陽光電系統的使用壽命約略20~30年,唯其長期可靠度為重要因素,因此,在太陽能發電之混合再生能源系統中,在發電元件如何確認太陽光電系統維持良好發電,希望以電致發光(electroluminecence, EL)影像技術做為元件級的電池、PV模組、系統串列共通檢測方法,精確量測系統串列的模組區域發電特性,以及能源系統如何充分使用太陽光電電力,讓過剩電量比例限制在3%以下,這兩點是混合太陽能發電之再生能源系統至關重要的問題。
    近年PV系統與儲能系統(BESS)成本不斷的下降,於電錶前(front-the-meter, FTM)與電錶後(behind-the-meter, BTM)之應用模式日益廣泛與成熟,PV/BESS應用於電錶後市場BTM)持續快速成長,對BTM應用PV/BESS的經濟效益分析說明,搭配用戶進行時間電價(time of use rates, TOU)的充放電排程控制,可有效減少用電戶的電費支出,另一方面,負載優先使用PV系統產生的電力,以減少外購電力的需求。
    本論文採用HOMER模擬提出PV/BESS應用於BTM的經濟效益分析方法,考慮再生能源的有效利用,限制PV過剩電量的一種分析方法,從模擬結果中決定出滿足過剩電量限制的解(本研究中過剩電量設為3%),找出滿足過剩電量限制的解,決定出不同比例再生能源條件下之PV/BESS解決方案,綜合考量各種契約容量設計方案,提供電力用戶評估和選擇系統方案。在台灣再生能源發展條例政策環境下,以PV/BESS混合再生能源系統規劃進行工業用電戶契約容量調整方案分析,提供政策與再生能源技術之調整分析方法,做為工業用電的精進改善措施。


    The photovoltaic (PV) system has become a potential power generation system of renewable energy. The industry estimates that the service life of the photovoltaic system is about 20 to 30 years, but its long-term reliability is an mportant issue to ensure the PV system well in the hybrid renewable energy system. The electroluminescence imaging technology plays key role as a common detection method for the solar cell, module, and system. In recent years, the cost of PV systems and energy storage systems (BESS) has continued to decline, and the application modes of front-the-meter (FTM) and behind-the-meter (BTM) have become increasingly widespread and mature. The BTM market continues to grow rapidly for PV/BESS application. The economic benefit analysis of the application of PV/BESS to BTM shows that it is used with users to perform time of use rates (TOU) charging and discharging schedules. The control plan can effectively reduce the electricity expense of users. On the other hand, the load demand is the priority to use the electricity generated by the PV system to reduce the electricityd demand for purchased electricity.
    This paper uses HOMER simulation to propose a method for analyzing the economic benefits of PV/BESS applied to BTM, considering the effective use of renewable energy and an analysis method to limit the excess power of PV. From the simulation results, the excess electricity fraction is limited to 3% to a novel precise analysis and effective use of energy for the economic benefit evaluation of PV/BESS. Under the condition that the electricity demand is met and the PV power generation is fully used, the aim is to find the most economical PV/BESS capacity allocation and optimal contract capacity scheme. Under the policy environment of Taiwan's Renewable Energy Development Regulations, the PV/BESS hybrid renewable energy system planning is used to analyze the contract capacity adjustment plan for industrial electricity users. The optimal scheme provides adjustment and analysis methods by considering the policies and renewable energy technologies, as a refined improvement for industrial electricity demand.

    中文摘要 IV Abstract VI 誌  謝 VIII 目  錄 IX 圖 目 錄 XI 表 目 錄 XIV 符 號 索 引 XV 第一章 緒論 1 1.1研究背景與動機 1 1.2文獻探討-太陽能發電性能與檢測分析 3 1.3文獻探討-混合再生能源系統規劃 9 1.4研究方法 16 1.5本論文之貢獻 17 1.6章節概要 19 第二章 太陽能發電性能與檢測分析 21 2.1太陽電池模組之品質特性與檢測方法 21 2.2非破壞性電致發光缺陷檢測 22 2.3關聯太陽能發電性能與檢測分析 25 2.4太陽光電模組串列之等效二極體模型 28 第三章 非破壞性電致發光影像檢測 33 3.1太陽電池模組之等效二極體特性擬合 33 3.2關聯螢光影像檢測與二極體模型 35 3.3太陽能系統之串列電致發光影像分析 40 3.4太陽模組串列之電致發光檢測系統 50 第四章 混合太陽能發電之再生能源系統的考量條件 54 4.1研究混合太陽能發電之再生能源系統說明 54 4.2研究考量與分析內容 54 4.3場址負載特性 56 4.4場址環境氣候特性 58 4.5電價計算與計算方式 59 第五章 混合再生能源發電系統架構 62 5.1混合再生能源發電系統架構說明 62 5.2太陽能發電系統 62 5.3儲能系統 63 5.4電力轉換系統 65 第六章 混合太陽能發電之再生能源系統規劃與經濟效益評估 66 6.1經濟效益評估方法 66 6.2經濟效益評估指標 66 6.3電氣評估指標(Electrical Assignment Criteria) 70 6.4再生能源系統之模擬分析 72 6.5模擬分析結果 74 6.6再生能源系統之靈敏度分析 78 第七章 結論與未來展望 85 7.1 結論 85 7.2未來展望 87 參考文獻 89 附錄-Interest Rate 97

    [1] Peng, C. Y.; Lin, F. M.; Wen, S. Y.; Kuo, Y. T. Defects for silicon-based solar cell and module, Industrial Materials. 2009, 273, 146-152.
    [2] Peng, C. Y.; Lin, F. M.; Huang, C. L. Introduction of non-destructive displaying defects technology for silicon-based solar cell and module, Instruments Today. 2009, 31, 35-42.
    [3] Peng, C. Y.; Wen, S. Y.; Ji, Z. J.; Huang, C. L.; Lin, F. M. The technology and trend for high-power PV module, Industrial Materials. 2015, 345, 123-128.
    [4] Peng, C. Y.; Wen, S. Y.; C. P. Huang; C. Y. Lu; C. C. Chan; C. M. Shu; K. W. Chang; Lin, F. M. Non-destructive displaying defects technology for photovoltaic module in outdoor solar system, Industrial Materials. 2016, 357, 122-129.
    [5] Zhan, Z. H.; Lu, K. W.; Hsieh, C. F.; Peng, C. Y. The verification technology of high performance and reliability for Taiwan excellent PV products, Industrial Materials. 2021, 417, 147-155.
    [6] TamizhMani, G.; Li, B.; Arends, T.; Kuitche, J.; Raghuraman, B.; Shisler, W.; Farnsworth, K.; Gonzales, J.; Voropayev, A.; Symanski, P. Fauilure analysis of design qualification testing: 2007 VS. 2005, in IEEE Photovoltaic specialists conference 2008, San Diego, CA, USA.
    [7] Isenberg, J., S. Riepe, S.W. Glunz, and W. Warta, Imaging method for laterally resolved measurement of minority carrier densities and lifetimes: Measurement principle and first applications, Journal of Applied Physics, 2003, 93(7), p. 4268-4275.
    [8] Bail, M., J. Kentsch, R. Brendel, and M.A. Schulz, Lifetime mapping of Si wafers by an infrared camera [for solar cell production], in Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty-Eighth IEEE. 2000, p. 99-103.
    [9] Würfel, P., T. Trupke, T. Puzzer, E. Schaffer, W. Warta, and S.W. Glunz, Diffusion lengths of silicon solar cells from luminescence images, Journal of Applied Physics, 2007, 101(12): p. 123110.
    [10] Trupke, T., Influence of photon reabsorption on quasi-steady-state photoluminescence measurements on crystalline silicon, Journal of Applied Physics, 2006, 100(6): p. 063531.
    [11] Giesecke, J., M. Kasemann, M.C. Schubert, B. Michl, M. The, W. Warta, and P. Würfel, Determination of Minority Carrier Diffusion Lengths in Silicon Solar Cells from Photoluminescence Images, in Proceedings of the 23rd European Photovoltaic Solar Energy Conference. 2008, Valencia, Spain.
    [12] Dyk, E.E. Van; Meyer, E. L. Analysis of the effect of parasitic resistances on the performance of photovoltaic modules, Renewable Energy, 2004, 29, 333–344.
    [13] Kasemann, M. et. al. Progress in silicon solar cell characterization with infrared imaging methods, In Proceedings of the 2008 33rd IEEE Photovoltaic Specialists Conference, San Diego, CA, USA, 1-5 September 2008; pp. 965–973.
    [14] Kasemann, M. et. al. Spatially resolved silicon solar cell characterization using infrared imaging methods, In Proceedings of the 2008 33rd IEEE Photovoltaic Specialists Conference, San Diego, CA, USA, 1-5 September 2008; pp. 1–7.
    [15] Dhimish, M.; Mather, P. Novel photovoltaic micro crack detection technique. IEEE Transactions on Device and Materials Reliability, 2019, 19, 304–312.
    [16] Gallardo-Saavedra, S.; Hernández-Callejo, L.; Alonso-García, M.; Muñoz-Cruzado-Alba, J.; Ballestín-Fuertes, J. Infrared thermography for the detection and characterization of photovoltaic defects: comparison between illumination and dark conditions, Sensors. 2020, 20, 4395.
    [17] Comello, S.; Reichelstein, S.; Sahoo, A. The road ahead for solar PV power. Renew. Sust. Energ. Rev. 2018, 92, 744–756.
    [18] Comello, S.; Reichelstein, S. The emergence of cost effective battery storage. Nat. Comm. 2019, 10, 1–9.
    [19] Hanser, P.; Lueken, R.; Gorman, W.; Mashal, J.; The Brattle Group. The practicality of distributed PV-battery systems to reduce household grid reliance. Util. Policy 2017, 46, 22–32.
    [20] Franklin, E.; Lowe, D.; Stocks, M. Assessment of market participation opportunities for behind-the-meter PV/ battery systems in the Australian electricity market. Energy Procedia 2017, 110, 420–427.
    [21] Lee, J.; Bérard, J.-P.; Razeghi, G.; Samuelsen, S. Maximizing PV hosting capacity of distribution feeder microgrid. Appl. Energy 2020, 261, 114400.
    [22] Novoa, L.; Flores, R.; Brouwer, J. Optimal renewable generation and battery storage sizing and siting considering local transformer limits. Appl. Energy 2019, 256, 113926.
    [23] Johnson, R.C.; Mayfield, M.; Beck, S.B.M. Battery energy storage for management of LV network operational violations: A multi-feeder analysis. Energy Procedia 2018, 151, 31–36.
    [24] Soini, M.C.; Parra, D.; Patel, M.K. Impact of prosumer battery operation on the cost of power supply. Journal of Energy Storage. 2020, 29, 101323.
    [25] Wu, D.; Ma, X.; Balducci, P.; Bhatnagar, D. An economic assessment of behind-the-meter photovoltaics paired with batteries on the Hawaiian Islands. Appl. Energy 2021, 286, 116550.
    [26] Simpkins, T.; Anderson, K.; Cutler, D.; Olis, D. Optimal sizing of a solar-plus-storage system for utility bill savings and resiliency benefits. In Proceedings of the 2016 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Minneapolis, MN, USA, 6–9 September 2016; pp. 1–6.
    [27] Tsai, C.-T.; Muna, Y.B.; Lin, H.-Y.; Kuo, C.-C.; Hsiung, R. Optimal design and performance analysis of solar power microsystem for mini-grid application. Microsyst. Technol. 2021, 27, 1267–1281.
    [28] Barbour, E.; González, M.C. Projecting battery adoption in the prosumer era. Applied Energy 2018, 215, 356–370.
    [29] Say, K.; John, M.; Dargaville, R. Power to the people: Evolutionary market pressures from residential PV battery investments in Australia. Energy Policy 2019, 134, 110977.
    [30] Nørgaard, J.B.; Kerekes, T.; Séra, D. Case study of residential PV power and battery storage with the Danish flexible pricing scheme. Energies 2019, 12, 799.
    [31] Say, K.; John, M.; Dargaville, R.; Wills, R.T. The coming disruption: The movement towards the customer renewable energy transition. Energy Policy 2018, 123, 737–748.
    [32] Wright, D.; Liu, L.; Parvan, L.; Majumdar, Z.; Giebink, N.C. Economic analysis of a novel design of microtracked concentrating photovoltaic modules. Prog Photovolt. 2020, 29, 485–498.
    [33] Wright, D.J.; Badruddin, S.; Robertson-Gillis, C. Micro-tracked CPV can be cost competitive with PV in behind-the-meter applications with demand charges. Front. Energy Res. 2018, 6, 00097.
    [34] Situ, J.; Wright, D. Economic analysis of commercial PV microgrids. In Proceedings of the 2017 IEEE International Conference on Smart Energy Grid Engineering (SEGE), Oshawa, ON, Canada, 14–17 August 2017; pp. 110–116.
    [35] Trevizan, R.D.; Nguyen, T.A.; Byrne, R.H. Sizing behind-the-meter energy storage and solar for electric vehicle fast-charging stations. In Proceedings of the 2020 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Sorrento, Italy, 24-26 June 2020; pp. 583–588.
    [36] Balducci, P.; Mongird, K.; Wu, D.; Wang, D.; Fotedar, V.; Dahowski, R. An evaluation of the economic and resilience benefits of a microgrid in Northampton, Massachusetts. Energies 2020, 13, 4802.
    [37] Tsai, C.-T.; Molla, E.M.; Muna, Y.B.; Kuo, C.-C. Techno-economic analysis of microsystem based hybrid energy combination for island application. Microsyst. Technol. 2021, 27, 1507–1523.
    [38] Sepúlveda-Mora, S.B.; Hegedus, S. Making the case for time-of-use electric rates to boost the value of battery storage in commercial buildings with grid connected PV systems. Energy 2021, 218, 119447.
    [39] Kabir, A.; Sunny, M.R.; Siddique, N.I. Assessment of grid-connected residential PV-battery systems in Sweden-A Techno-economic Perspective. In Proceedings of the 2021 IEEE International Conference in Power Engineering Application (ICPEA), Shah Alam, Malaysia, 8–9 March 2021; pp. 73–78.
    [40] Tsai, C.-T.; Beza, T.M.; Molla, E.M.; Kuo, C.-C. Analysis and sizing of mini-grid hybrid renewable energy system for islands. IEEE Access 2020, 8, 70013–70029.
    [41] Raj, A.; Reddy, T.A. Techno-economic analysis of a PV-battery system for a commercial building under different utility rate structures. In Proceedings of the Proceedings of the ASME 2018 Power Conference collocated with the ASME, V001T06A011, Lake Buena Vista, FL, USA, 24–28 June 2018.
    [42] Boampong, R.; Brown, D.P. On the benefits of behind-the-meter rooftop solar and energy storage: The importance of retail rate design. Energy Econ. 2020, 86, 104682.
    [43] Behind-the-meter batteries: Innovation landscape briefn—News—International Renewable Energy Agency (IRENA). Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Sep/IRENA_BTM_Batteries_2019.pdf (accessed on 13 June 2021).
    [44] Energy Storage Monitor: Latest trends in energy storage 2019—News—World Energy Council. Available online: https://www.worldenergy.org/assets/downloads/ESM_Final_Report_05-Nov-2019.pdf (accessed on 13 June 2021).
    [45] Lemence, A.L.G.; Tamayao, M.-A.M. Energy Consumption profile estimation and benefits of hybrid solar energy system adoption for rural health units in the Philippines. Renew. Energy 2021, 178, 651–668.
    [46] Bhakta, S.; Mukherjee, V. Performance indices evaluation and techno economic analysis of photovoltaic power plant for the application of isolated India’s island. Sustain. Energy Technol. Assess 2017, 20, 9–24.
    [47] Kebede, A.A.; Coosemans, T.; Messagie, M.; Jemal, T.; Behabtu, H.A.; Mierlo, J.V.; Berecibar, M. Techno-economic analysis of lithium-ion and lead-acid batteries in stationary energy storage application, J. Energy Storage 2021, 40, 102748.
    [48] Mehrpooya, M.; Mohammadi, M.; Ahmadi, E. Techno-economic-environmental study of hybrid power supply system: A case study in Iran. Sustain. Energy Technol. Assess 2018, 25, 1–10.
    [49] Tomar, V.; Tiwari, G.N. Techno-economic evaluation of grid connected PV system for households with feed in tariff and time of day tariff regulation in New Delhi–A sustainable approach. Renew. Sustain. Energy Rev. 2017, 70, 822–835.
    [50] Liu, G.; Rasul, M.G.; Amanullah, M.T.O.; Khan, M.M.K. Techno-economic simulation and optimization of residential grid-connected PV system for the Queensland climate, Renew. Energy 2012, 45, 146–155.
    [51] Tsai, W.-T. Trend Analysis of Taiwan’s greenhouse gas emissions from the energy sector and its mitigation strategies and promotion actions, Atmosphere 2021, 12, 859.
    [52] Kung, C.-C.; McCarl, B.A. The potential role of renewable electricity generation in Taiwan. Energy Policy 2020, 138, 111227.
    [53] Wang, C.-N.; Nguyen, N.-A.-T.; Dang, T.-T.; Bayer, J. Two-stage multiple criteria decision making for site selection of solar photovoltaic (PV) power plant: A case study in Taiwan, IEEE Access. 2021, 9, 75509–75525.
    [54] Tsai, C.-T.; Ocampo, E.M.; Beza, T.M.; Kuo, C.-C. Techno-economic and sizing analysis of battery energy storage system for behind-the-meter application. IEEE Access. 2020, 8, 203734–203746.
    [55] Krauter, S.; Grunow, P. Wafer, cell and module quality requirements. Photovoltaics International. 2008, August, 59-65.
    [56] Johnston, S. W.; Call, N. J.; Phan, B.; Ahrenkiel, R. K. Applications of imaging techniques for solar cell characterization, In Proceedings of the 2009 34th IEEE Photovoltaic Specialists Conference (PVSC), Philadelphia, PA, USA, 7-12 June 2009; pp. 276–281.
    [57] Berghold, J.; Nieschalk, D.; Seidel, C.; Okoroafor, O.; Lehmann, S.; Wendlandt, S. Potential induced degradation effects and tests for crystalline silicon cells, In Proceedings of NREL PV Module Reliability Workshop, Golden, CO, USA, 28 February 2012; pp. 177. (https://www.nrel.gov/docs/fy14osti/60169.pdf)
    [58] Hinken, D.; Ramspeck, K.; Bothe, K.; Fischer, B.; Brendel, R. Series resistance imaging of solar cells by voltage dependent electroluminescence. Applied Physics Letters. 2007, 91, 182104.
    [59] HOMER software–the trusted global standard in hybrid power system modeling—News—HOMER Energy Website. Available online: https://www.homerenergy.com/ (accessed on 13 June 2021).
    [60] Peng, C. Y.; Kuo, C. C.; Tsai, C.-T. Optimal configuration with capacity analysis of PV-plus-BESS for behind-the-meter application. Applied Sciences 2021, 11, 7851.

    無法下載圖示 全文公開日期 2024/10/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE