簡易檢索 / 詳目顯示

研究生: 陳廣霈
GUANG-PEI CHEN
論文名稱: 應用於5G電信基地台之磷酸鋰鐵電池管理之研製
Design and Implementation of a LiFePO4 Battery Management System for 5G Telecom Base Station
指導教授: 林長華
Chang-Hua Lin
口試委員: 劉添華
Tian-Hua Liu
白凱仁
Kai-Jun Pai
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 145
中文關鍵詞: 儲能系統電池管理系統削峰填谷電信基地台
外文關鍵詞: Energy storage system, Battery management system, Peak shaving and valley filling, Telecommunication base station
相關次數: 點閱:280下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在研製應用於5G電信基地台之電池管理系統,系統中利用磷酸鋰鐵電池模組作為儲能裝置,以電池管理系統進行控制與維護,並建置具有削峰填谷之電力調度功能的儲能系統。其次,整體系統是由中央監控模組、高頻開關整流器、磷酸鋰鐵電池模組、過電流監控保護電路,以及電池管理系統所組成,其中,電池管理系統與過電流監控保護電路為確保電池模組操作於安全的工作條件內,以及能夠在異常的情況即時脫離外部連結。再者,系統的主要電力來源為高頻開關整流器與電池模組,前者轉換市電供給至負載與電池模組,而後者於斷電的時段供給負載。然而,傳統基地台發生電力中斷的機率不高,為了提升電池模組的潛在價值,本文分析台電之電價表與基地台電源之負載的關係,針對需量契約容量與夏月時間電價,提出兩種削峰填谷之控制策略,並且分別透過模擬及實測結果進行比較,以驗證所提系統之可行性。


    This thesis aims to implement a battery management system (BMS) applied to 5G telecommunication base stations. The overall system is composed of control and supervisory unit (CSU), switch module rectifier (SMR), a lithium iron phosphate battery module as energy storage devices, an overcurrent monitoring protection circuit and BMS which ensure that the battery module is operated in safe working conditions, immediately disconnected in abnormal situations, and also builds an energy storage system for load dispatch to cut peaks and fill valleys. Furthermore, the main power sources of the system are SMR and battery module. The former converts the utility power to the load and the battery module, and the latter supplies the load during the period of power failure. However, due to low probability of power interruption in traditional base stations, in order to increase the potential value of battery modules, this thesis analyzes the relationship between Taipower’s electricity tariff and the load of the base station power. According to the demand contract capacity and the electricity price in summer, two control strategies of peak shaving and valley filling are proposed, and the actual measurement results are compared with simulation to verify the feasibility of the system.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1. 研究背景 1 1.2. 文獻探討 3 1.3. 論文架構 5 第二章 基地台電源與電池電量平衡技術簡介 7 2.1 基地台電源介紹 7 2.2 電池種類介紹 10 2.3 本文所使用之磷酸鋰鐵電池規格 13 2.4 電池電量平衡技術介紹 15 2.4.1 被動式電池電量平衡架構 18 2.4.2 主動式電池電量平衡架構 19 2.4.3 本文所使用之電池電量平衡架構 28 第三章 磷酸鋰鐵電池管理系統之設計與實現 33 3.1 系統架構 34 3.2 系統規格 35 3.3 電池管理系統設計 36 3.3.1 電池管理系統平衡功能 37 3.3.2 電池管理系統監測功能 43 3.3.3 電池管理系統保護功能 51 3.4 輔助電源之應用與說明 55 第四章 數位化控制之設計與實現 56 4.1 數位控制晶片dsPIC33FJ256GP710A 57 4.1.1 數位控制晶片規格 57 4.1.2 編程器與開發環境說明 59 4.2 通訊傳輸功能 61 4.2.1 Modbus通訊協定 66 4.2.1 離線型數據儲存 72 4.2.2 即時時鐘存取 75 4.3 電池電量平衡電路控制流程 76 4.4 數位控制晶片與電池管理系統之整合 82 第五章 基地台電源系統設計 85 5.1 基地台電源系統規格 85 5.2 基地台電源用電負載說明 87 5.3 契約容量與時間電價說明 89 5.4 時間電價與用電負載分析 92 5.5 削峰填谷控制策略 95 第六章 電池平衡與削峰填谷模擬與實測 100 6.1 系統測試平台與儀器介紹 100 6.2 電池平衡之模擬與實測結果 106 6.2.1 電池模組至電池芯電量平衡(Pack-to-Cell) 107 6.2.2 電池芯至電池模組電量平衡(Cell-to-Pack) 110 6.2.3 電池電量平衡實測結果 113 6.3 基地台電源削峰填谷模擬與實測結果 116 6.3.1 系統之操作狀態說明 117 6.3.2 削峰填谷控制策略一 120 6.3.3 削峰填谷控制策略二 122 6.3.4 控制策略成果比較 124 第七章 結論與未來展望 125 7.1 結論 125 7.2 未來展望 126 參考文獻 127

    [1] Stefan Pongratz,“Key Takeaways—Total Telecom Equipment Market 2020,” Dell' Oro Group, March 8 2021.
    [2] 資策會產業情報研究所,“2021年全球5G用戶數達3.3億,” 2020/10/30.[Online], Available:https://mic.iii.org.tw/news.aspx?id=585
    [3] 工研院,“攜手臺廠打造5G小基站生態系,” 工業技術與資訊月刊, 338期2020年03月號.
    [4] H. Qian, J. Zhang, J.-S. Lai, and W. Yu, “A high-efficiency grid-tie battery energy storage system,” IEEE Trans. Power Electron., vol. 26, no. 3, pp. 886–896, Mar. 2011, doi: 10.1109/TPEL.2010.2096562.
    [5] G. Wang et al., “A Review of Power Electronics for Grid Connection of Utility-Scale Battery Energy Storage Systems,” IEEE Trans. Sustain. Energy, vol. 7, no. 4, pp. 1778–1790, Oct. 2016, doi: 10.1109/TSTE.2016.2586941.
    [6] M. T. Lawder et al., “Battery Energy Storage System (BESS) and Battery Management System (BMS) for Grid-Scale Applications,” Proc. IEEE, vol. 102, no. 6, pp. 1014–1030, Jun. 2014, doi: 10.1109/JPROC.2014.2317451.
    [7] W. Pei, W. Deng, Z. Shen, and Z. Qi, “Operation of battery energy storage system using extensional information model based on IEC 61850 for micro-grids,” IET Gener. Transm. Amp Distrib., vol. 10, no. 4, pp. 849–861, Mar. 2016, doi: 10.1049/iet-gtd.2014.1123.
    [8] M. Świerczyński, D. I. Stroe, A.-I. Stan, R. Teodorescu, and D. U. Sauer, “Selection and Performance-Degradation Modeling of LiMO2/Li4Ti5O 12 and LiFePO 4/C Battery Cells as Suitable Energy Storage Systems for Grid Integration With Wind Power Plants: An Example for the Primary Frequency Regulation Service,” IEEE Trans. Sustain. Energy, vol. 5, no. 1, pp. 90–101, Jan. 2014, doi: 10.1109/TSTE.2013.2273989.
    [9] S. Wang, S. Yang, W. Yang, and Y. Wang, “A New Kind of Balancing Circuit With Multiple Equalization Modes for Serially Connected Battery Pack,” IEEE Trans. Ind. Electron., vol. 68, no. 3, pp. 2142–2150, Mar. 2021, doi: 10.1109/TIE.2020.2973886.
    [10] S. Liu et al., “A Novel Discharge Mode Identification Method for Series-Connected Battery Pack Online State-of-Charge Estimation Over A Wide Life Scale,” IEEE Trans. Power Electron., vol. 36, no. 1, pp. 326–341, Jan. 2021, doi: 10.1109/TPEL.2020.3001020.
    [11] M. Preindl, “A Battery Balancing Auxiliary Power Module With Predictive Control for Electrified Transportation,” IEEE Trans. Ind. Electron., vol. 65, no. 8, pp. 6552–6559, Aug. 2018, doi: 10.1109/TIE.2017.2682030.
    [12] L. Y. Wang et al., “Balanced Control Strategies for Interconnected Heterogeneous Battery Systems,” IEEE Trans. Sustain. Energy, vol. 7, no. 1, pp. 189–199, Jan. 2016, doi: 10.1109/TSTE.2015.2487223.
    [13] Q. Ouyang, J. Chen, J. Zheng, and H. Fang, “Optimal Cell-to-Cell Balancing Topology Design for Serially Connected Lithium-Ion Battery Packs,” IEEE Trans. Sustain. Energy, vol. 9, no. 1, pp. 350–360, Jan. 2018, doi: 10.1109/TSTE.2017.2733342.
    [14] J.-N. Shen, J.-J. Shen, Y.-J. He, and Z.-F. Ma, “Accurate State of Charge Estimation With Model Mismatch for Li-Ion Batteries: A Joint Moving Horizon Estimation Approach,” IEEE Trans. Power Electron., vol. 34, no. 5, pp. 4329–4342, May 2019, doi: 10.1109/TPEL.2018.2861730.
    [15] H. Dai, G. Zhao, M. Lin, J. Wu, and G. Zheng, “A Novel Estimation Method for the State of Health of Lithium-Ion Battery Using Prior Knowledge-Based Neural Network and Markov Chain,” IEEE Trans. Ind. Electron., vol. 66, no. 10, pp. 7706–7716, Oct. 2019, doi: 10.1109/TIE.2018.2880703.
    [16] M. Cacciato, G. Nobile, G. Scarcella, and G. Scelba, “Real-Time Model-Based Estimation of SOC and SOH for Energy Storage Systems,” IEEE Trans. Power Electron., vol. 32, no. 1, pp. 794–803, Jan. 2017, doi: 10.1109/TPEL.2016.2535321.
    [17] Y. Zhou, M. Huang, and M. Pecht, “An Online State of Health Estimation Method for Lithium-ion Batteries Based on Integrated Voltage,” 2018 IEEE International Conference on Prognostics and Health Management (ICPHM), Jun. 2018, pp. 1–5. doi: 10.1109/ICPHM.2018.8448947.
    [18] Q. Yu, R. Xiong, C. Lin, W. Shen, and J. Deng, “Lithium-Ion Battery Parameters and State-of-Charge Joint Estimation Based on H-Infinity and Unscented Kalman Filters,” IEEE Trans. Veh. Technol., vol. 66, no. 10, pp. 8693–8701, Oct. 2017, doi: 10.1109/TVT.2017.2709326.
    [19] D. Zheng, H. Wang, J. An, J. Chen, H. Pan, and L. Chen, “Real-Time Estimation of Battery State of Charge With Metabolic Grey Model and LabVIEW Platform,” IEEE Access, vol. 6, pp. 13170–13180, 2018, doi: 10.1109/ACCESS.2018.2807805.
    [20] S. Qi, X. Gong, and S. Li, “Study on power feeding system for 5G network,” 2018 IEEE International Telecommunications Energy Conference (IN℡EC), Oct. 2018, pp. 1–4. doi: 10.1109/INTLEC.2018.8612403.
    [21] 工研院,“通訊新藍海 5G大顯神通”, 工業技術與資訊月刊, 338期2020年03月號.
    [22] 工研院資訊與通訊研究所,“5G無線接取技術發展與探索”, 2018/04/30. [Online], Available:https://reurl.cc/MAGzbK
    [23] Roger Hall,“為何5G網路需要Sub-6GHz與大規模MIMO?”, 電子工程專輯, 2021年3月號.
    [24] Battery University,“When Was the Battery Invented?,” BU-101, 2019-06-14. [Online], Available: https://reurl.cc/kZrZ4K
    [25] Republic service,“Battery Recycling is Important for Environmental Health,” January 20, 2020. [Online], Available: https://reurl.cc/VEN5pA
    [26] Battery University,“Choices of Primary Batteries,” BU-106a, 2020-11-17. [Online], Available: https://reurl.cc/rgr1lZ
    [27] 國家實驗研究院,“鋰電池保護機制概述”. [Online], Available: https://reurl.cc/eELEbK
    [28] Sony History,“高い安全性と高エネルギー、長寿命の実現”. [Online], Available: https://reurl.cc/Ak4kee
    [29] Battery University,“Summary Table of Lithium-based Batteries,” BU216, 2020-11-20. [Online], Available: https://reurl.cc/mLrL5M
    [30] 陳寧賢,“鋰電池模組內外平衡之設計與實現,”國立臺灣科技大學電機工程系碩士學位論文,民國一百零九年七月。
    [31] Z. Huang, H. Li, W. Mei, C. Zhao, J. Sun, and Q. Wang, “Thermal Runaway Behavior of Lithium Iron Phosphate Battery During Penetration,” Fire Technol., vol. 56, no. 6, pp. 2405–2426, Nov. 2020, doi: 10.1007/s10694-020-00967-1.
    [32] 昇陽電池,“產品特性與優勢”. [Online], Available:https://reurl.cc/ogrg2j
    [33] T. Tsujikawa, K. Yabuta, M. Arakawa, and K. Hayashi, “Safety of large-capacity lithium-ion battery and evaluation of battery system for telecommunications,” J. Power Sources, vol. 244, pp. 11–16, Dec. 2013, doi: 10.1016/j.jpowsour.2013.01.155.
    [34] C. Wu, J. Sun, C. Zhu, Y. Ge, and Y. Zhao, “Research on Overcharge and Overdischarge Effect on Lithium-Ion Batteries,” 2015 IEEE Vehicle Power and Propulsion Conference (VPPC), Oct. 2015, pp. 1–6. doi: 10.1109/VPPC.2015.7353006.
    [35] J. Feng and L. Lu, “A novel bifunctional additive for safer lithium ion batteries,” J. Power Sources, vol. 243, pp. 29–32, Dec. 2013, doi: 10.1016/j.jpowsour.2013.05.170.
    [36] G. Gunlu, “Dynamically Reconfigurable Independent Cellular Switching Circuits for Managing Battery Modules,” IEEE Trans. Energy Convers., vol. 32, no. 1, pp. 194–201, Mar. 2017, doi: 10.1109/TEC.2016.2616190.
    [37] C. Pinto, J. V. Barreras, E. Schaltz, and R. E. Araújo, “Evaluation of Advanced Control for Li-ion Battery Balancing Systems Using Convex Optimization,” IEEE Trans. Sustain. Energy, vol. 7, no. 4, pp. 1703–1717, Oct. 2016, doi: 10.1109/TSTE.2016.2600501.
    [38] P. A. Cassani and S. S. Williamson, “Design, Testing, and Validation of a Simplified Control Scheme for a Novel Plug-In Hybrid Electric Vehicle Battery Cell Equalizer,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 3956–3962, Dec. 2010, doi: 10.1109/TIE.2010.2050750.
    [39] S. R. Raman, X. D. Xue, and K. W. E. Cheng, “Review of charge equalization schemes for Li-ion battery and super-capacitor energy storage systems,” 2014 International Conference on Advances in Electronics Computers and Communications, Oct. 2014, pp. 1–6. doi: 10.1109/ICAECC.2014.7002471.
    [40] N. Ghaeminezhad, Q. Ouyang, X. Hu, G. Xu, and Z. Wang, “Active Cell Equalization Topologies Analysis for Battery Packs: A Systematic Review,” IEEE Trans. Power Electron., vol. 36, no. 8, pp. 9119–9135, Aug. 2021, doi: 10.1109/TPEL.2021.3052163.
    [41] L. Wei, L. Jie, S. Wenji, and F. Ziping, “Study on passive balancing characteristics of serially connected lithium-ion battery string,” 2017 13th IEEE International Conference on Electronic Measurement Instruments (ICEMI), Oct. 2017, pp. 489–495. doi: 10.1109/ICEMI.2017.8265862.
    [42] H. Chen, L. Zhang, and Y. Han, “System-Theoretic Analysis of a Class of Battery Equalization Systems: Mathematical Modeling and Performance Evaluation,” IEEE Trans. Veh. Technol., vol. 64, no. 4, pp. 1445–1457, Apr. 2015, doi: 10.1109/TVT.2014.2330692.
    [43] H.-D. Gui, Z. Zhang, D.-J. Gu, Y. Yang, Z. Lu, and Y.-F. Liu, “A hierarchical active balancing architecture for Li-ion batteries,” 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Mar. 2016, pp. 1243–1248. doi: 10.1109/APEC.2016.7468027.
    [44] Z. Zhang, H. Gui, D.-J. Gu, Y. Yang, and X. Ren, “A Hierarchical Active Balancing Architecture for Lithium-Ion Batteries,” IEEE Trans. Power Electron., vol. 32, no. 4, pp. 2757–2768, Apr. 2017, doi: 10.1109/TPEL.2016.2575844.
    [45] 李宥霖 ,“具雙向返馳轉換器之主動式電池平衡系統控制策略,”國立臺灣科技大學電機工程系 碩士學位論文,民國一百零八年七月。
    [46] Vishay Siliconix,“SUP90330E-GE3 200-V N-Channel Power MOSFET Datasheet”.
    [47] Infineon Technologies,“IPB090N06N3 60-V N-Channel Power MOSFET Datasheet”.
    [48] TOSHIBA,“TLP250H Datasheet”.
    [49] Letex Technology Corp,“LT325 Datasheet”.
    [50] Texas Instruments,“LM358-BIDR Datasheet”.
    [51] AKM Semiconductor,“CQ-330G Datasheet”.
    [52] H. Karlsen, T. Dong, Z. Yang, and R. Carvalho, “Temperature-Dependence in Battery Management Systems for Electric Vehicles: Challenges, Criteria, and Solutions,” IEEE Access, vol. 7, pp. 142203–142213, 2019, doi: 10.1109/ACCESS.2019.2943558.
    [53] Murata Manufacturing Co,“NXFT15WF104FA1B025 Datasheet”.
    [54] YM tech Co,“CTT200 Datasheet”.
    [55] LEM,“HTA-200-S Datasheet”.
    [56] J. Slaughter, “Quantization errors in digital control systems,” IEEE Trans. Autom. Control, vol. 9, no. 1, pp. 70–74, Jan. 1964, doi: 10.1109/TAC.1964.1105624.
    [57] Microchip Technology Inc,“dsPIC33FJ256GP710A Datasheet”.
    [58] Microchip Technology Inc,“MPLAB PICkit 4 In-Circuit Debugger”.
    [59] Microchip Technology Inc,“In-Circuit Serial Programming ICSP Guide”
    [60] L. G. Roberts and B. D. Wessler, “Computer network development to achieve resource sharing,” in Proceedings of the May 5-7, 1970, spring joint computer conference, New York, NY, USA, May 1970, pp. 543–549. doi: 10.1145/1476936.1477020.
    [61] Maxim Integrated Products,“DS3231 Datasheet”.
    [62] Pål Frenger, Richard Tano,“A technical look at 5G energy consumption and performance,” The Ericsson Blog, SEP 17, 2019. [Online], Available: https://reurl.cc/En4nOn
    [63] L. A. Wong, V. K. Ramachandaramurthy, S. L. Walker, and J. B. Ekanayake, “Optimal Placement and Sizing of Battery Energy Storage System Considering the Duck Curve Phenomenon,” IEEE Access, vol. 8, pp. 197236–197248, 2020, doi: 10.1109/ACCESS.2020.3034349.
    [64] 台灣電力公司,“電價表,” 107年6月26日. [Online], Available: https://reurl.cc/eELE2L

    無法下載圖示 全文公開日期 2031/08/12 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE