簡易檢索 / 詳目顯示

研究生: 譚夢琪
Agnes - Kurniawati Harijanto
論文名稱: 使用的皂甙和殼聚醣在浮選分離藻類
Use of Saponin and Chitosan in Flotation Separation of Algae
指導教授: 劉志成
Jhy-Chern Liu
口試委員: 顧 洋
Young Ku
陳嘉明
Jia-Ming Chern
黃志彬
Chih-Pin Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 105
中文關鍵詞: 小球藻幾丁聚醣十六烷基三甲基溴化銨膠凝浮選有機物質皂素斜生柵藻
外文關鍵詞: Chlorella vulgaris, chitosan, CTAB, flocculation, flotation, organic matter, saponin, Scenedesmus obliquus
相關次數: 點閱:185下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討藉由曝氣浮選,包含collectors種類並利用幾丁聚醣作預處理對於藻類浮選分離的影響。此研究當中使用小球藻和斜生柵藻兩種類型的藻類,並且利用掃描式電子顯微鏡(SEM)、傅立葉轉換紅外線光譜儀(FTIR)、界面電位儀、粒徑分析儀和濕式化學分析法,包括濁度、溶解態有機碳(DOC)、蛋白質和多醣類等分析進行藻類懸浮液定性。
    據研究結果觀察,使用100mg/l的皂素能夠回收22.5%的藻類,而使用60 mg/l 的CTAB能回收97.4%的水藻。然而,若對藻類懸浮液進行預處理(混凝-膠凝程序),則藻類回收率能提高至97.4%。藻類細胞回收率和有機物質的去除率皆隨著幾丁聚醣的劑量增加而增加 (0-20mg/l 幾丁聚醣)。然而,當幾丁聚醣的劑量超過20mg/l,則會降低藻類分離之效果。藻類的特性,包含藻類大小與形狀不會因為藉由曝氣浮選的分離而有所影響。本研究使用之幾丁聚醣合併皂素系統顯示出:加強藻類細胞回收率、天然生化物質的利用和減少界面活性劑的使用量等多項好處。


    This study aims to study the separation of algae by dispersed air flotation (DiAF) including effects of types of collectors, and pretreatment by using chitosan. Two types of algae were used in this study, they are Chlorella vulgaris and Scenedesmus obliquus. The characteristics of algae suspension were assessed using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), zeta potential measurement, particle sizer, and wet chemical analysis, including dissolved organic carbon (DOC), protein, and polysaccharide.
    It was observed that 22.5% of algae removal was achieved when 100 mg/l saponin was used, and 91.4% algae was removed when 60 mg/l CTAB was used. However, with the pretreatment (coagulation-flocculation) of the algae suspension, it can increase algae removal to 97.4%. When the dose of chitosan increased (0-20 mg/l of chitosan), the removal of algae cells and organic materials both increased. However, separation efficiency decreased when at chitosan dose high than 20 mg/l. There was no effect of characteristics of algae, including size and shape to the removal of algae by using DiAF. This chitosan-saponin system showed several benefits: enhanced cell recovery, utilization of natural biochemicals, and reduced amount of surfactant needed.

    ABSTRACT ABSTRACT (in Chinese) ACKNOWLEDGEMENT NOMENCLATURES CONTENTS LIST OF TABLES LIST OF FIGURES CHAPTER 1. INTRODUCTION 1.1. Background 1.2. Objective CHAPTER 2. LITERATURE REVIEW 2.1. Algae and algogenic organic matter (AOM) 2.1.1 Chlorella vulgaris 2.1.2. Scenedesmus obliquus 2.2. Cultivation of algae 2.3. Separation process of microalgae 2.3.1. Flotation separation 2.3.2. Coagulation 2.4. Surfactants 2.4.1. N-Cetyl-N-N-N-trimethyl ammonium bromide (CTAB) 2.4.2. Saponin 1 2.5. Chitosan CHAPTER 3. MATERIALS AND METHODS 3.1. Materials 3.2. Apparatus 3.3. Experimental scheme 3.4 Cultivation of algae 3.4.1. Cultivation of Chlorella vulgaris 3.4.2. Cultivation of Scenedesmus obliquus 3.5. Determination of algae growth 3.6. Flotation separation of algae 3.7. Coagulation-flocculation of algae 3.8. Characterization 3.8.1. FTIR 3.8.2. HPLC 3.8.3. Zeta potential 3.8.4. TOC 3.8.5. Protein and polysaccharide analysis 3.8.5.1. Protein (Lowry method) 3.8.5.1. Polysaccharide (Anthrone method) 3.8.6. SEM 3.8.7. Surface tension 3.8.8. Particle size distribution CHAPTER 4. RESULTS AND DISCUSSION 4.1. Cultivation of algae 4.1.1. Chlorella vulgaris 4.1.2. Scenedesmus obliquus 4.1.3. Characteristics of algae 4.2. Saponin 4.3. Flotation of algae 4.3.1. Effect of surfactant dose 4.3.2. Effect of coagulant dose 4.4. Zeta potential measurement 4.5. Particle size distribution measurement CHAPTER 5. CONCLUSSIONS AND RECOMMENDATIONS 5.1. Conclussions 5.2. Recommendations REFERENCES APPENDIX

    Ahmad, A.L., Mat Yasin, N.H., Derek, C.J.C., Lim, J.K., 2011. Optimization of microalgae coagulation process using chitosan. Chemical Engineering Journal, 173, 879-882.
    Applebaum, S.W., Marco, S., Birk, W., 1986. Saponins as possible factors of resistance of legume seeds to attack of insects. J. Agric. Food Chem., 37, 1185
    Barr, I.G., Sjolander, A., Cox, J.C., 1998. ISCOMs and other saponin based adjuvants. Advanced Drug Delivery Reviews, 32, 247-271.
    Bognolo, G., 1999. Biosurfactants as emulsifying agents for hydrocarbons. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 152, 41-52.
    Bratskaya, S., Schwarz, S., and Chervonetsky, D., 2004. Comparative study of humic acids flocculation with chitosan hydrochloride and chitosan glutamate. Water Research, 38, 2955-2961.
    Brennan, L., and Owende, P., 2010. Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14(2), 557-577.
    Chen, C., Ma, X., He, Y., 2012. Co-pyrolysis characteristics of microalgae Chlorella vulgaris and coal through TGA. Bioresource Technology, 117, 264-273.
    Chen, C.Y., Yeh, K.L., Aisyah, R., Lee, D.J., Chang, J.S., 2011. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology, 102, 71-81.
    Chen, W.J., Hsiao, L.C., Chen, K.K.Y., 2008. Metal desorption from copper(II)/nickel(II)-spiked kaolin as a soil component using plant-derived saponin biosurfactant. Process Biochemistry, 43, 488-498.
    Chen, Y.M., Liu, J.C., Ju, Y.H., 1998. Flotation removal of algae from water. Colloids and Surfaces B: Biointerfaces, 12, 49-55.
    Chen, Y.M., Liu, J.C., Ju, Y.H., 1999. Separation of algal cells from water by column flotation. Separation Science and Technology, 34, 2259-2272.
    Chen, C.Y., Yeh, K.L., Aisyah, R., Lee, D.J., Chang, J.S., 2011. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology, 102, 71-81.
    Cheng, Y.L., Juang, Y.C., Liao, G.Y., Tsai, P.W., Ho, S.H.,Yeh, K.L., Chen, C.Y., Chang, J.S., Liu, J.C., Chen, W.M., Lee, D.J.,2011. Harvesting of Scenedesmus obliquus FSP-3 using dispersed ozone flotation. Bioresource Technology, 102, 82-87.
    Cheng, Y.L., Juang, Y.C., Liao, G.Y., Tsai, P.W., Ho, S.H., Yeh, K.L., Chen, C.Y., Chang, J.S., Liu, J.C., Lee, D.J., 2010. Dispersed ozone flotation of Chlorella vulgaris. Bioresource Technology, 101, 9092-9096.
    Chojnacka, K., Marquez-Rocha, F.J., 2004. Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae. Biotechnology,3, 21-34.
    Edzwald, J.K., Wingler, B.J., 1990. Chemical and physical aspects of dissolved-air flotation for the removal of algae. Journal of Water Supply: Research Technology AQUA, 39(1), 24–35.
    Godos, i. d., Guzman, H. O., Soto, R., Garcia-Encina, P. A., Becares, E., Munoz, R., Vargas, V. A., 2011. Coagulation/flocculation-based removal of algal-bacterial biomass from piggery wastewater treatment. Bioresource Technology, 102(2), 923-927.
    Gogate, P. R., Pandit, A. B., 2004. A review of imperative technologies for wastewater treatment II: hybrid methods. Advances in Environmental Research, 8(3-4), 553-597.
    Henderson, R.K., Baker, A., Parsons, S.A., Jefferson, B., 2008(d). Characterization of algogenic organic matter extracted from cyanobacteria, green algae and diatoms. Water Research, 42, 3435-3445.
    Henderson, R.K., Parsons, S.A., Jefferson, B., 2008(a). The impact of algal properties and pre-oxidation on solid-liquid separation of algae. Water Research, 42(8-9), 1827-1845.
    Henderson, R.K., Parsons, S.A., Jefferson, B., 2008(b). Successful removal of algae through the control of zeta potential. Separation Science and Technology, 43(7), 1653-1666.
    Henderson, R.K., Parsons, S.A., Jefferson, B., 2008(c). Surfactants as bubble surface modifiers in the flotation of algae: dissolved air flotation that utilizes a chemically modified bubble surface. Environmental Science and Technology, 42(13), 4883–4888.
    Henderson, R.K., Parsons, S.A., Jefferson, B., 2009(a). The potential for using bubble modification chemicals in dissolved air flotation for algae removal. Separation Science and Technology, 44, 1923-1940.
    Henderson, R.K., Parsons, S.A., Jefferson, B., 2010. The impact of differing cell and algogenic organic matter (AOM) characteristics on the coagulation and flotation of algae. Water Research, 44(12), 3617-3624.
    Ho, S.H., Chen, C.Y., Lee, D.J., Chang, J.S., 2011. Perspective on microalgal CO2-emission mitigation systems. Biotechnology Advances, 29, 189-198.
    Ho, S.H., Chen, W.M., Chang, J.S., 2010. Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production. Bioresource Technology, 101, 8725-8730.
    Huang, C.P., Dong, C.D., Tang, Z.H., 1993. Advanced chemical oxidation: its present role and potential future in hazardous waste treatment. Waste Management, 13(5-7), 361-377
    Huang, J., Grahama, N., Templetona, M.R., Zhang, Y., Collins, C., Nieuwenhuijsen M., 2009. A comparison of the role of two blue–green algae in THM and HAA formation. Water research, 43(12), 3009–3018.
    Huang, G.H., Chen, F., Wei, D., Zhang, X.W., Chen, G., 2010. Biodiesel production by microalgal biotechnology. Appl. Energ., 87, 38-46.
    Hung, M. T., and Liu, J. C., 2006. Microfiltration for separation of green algae from water. Colloids and Surfaces, 51, 157-164.
    Kurita, K,. 2006. Chitin and chitosan: functional biopolymers from marine crustaceans. Marine Biotechnology, 8, 203-226.
    Lertsutthiwong, P., Sutti, S., Powtongsook, S., 2009. Optimization of chitosan flocculation for phytoplankton removal in shrimp culture ponds. Aquacultural Engineering, 41, 188-193.
    Liu, J.C., Chen, Y.M., Ju, Y.H., 1998. Separation of Algal Cells from Water by Column Flotation. Separation Science and Technology, 34(11), 2259-2272.
    Liu, J.C., Warmadewanthi, Chang, C.J., 2009. Precipitation flotation of phosphate from water. Colloids and Surfaces A: Physicochem. Eng. Aspects, 347, 215-219.
    Lv, J.M., Cheng, L.H., Xu, X.H., Zhang, L., Chen, H.L., 2010. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresource Technology, 101, 6797-6804.
    Martinez, M.E., Jimenez, J.M., Yousfi, F.E., 1999. Influence of phosphorus concentration and temperature on growth and phosphorus uptake by the microalgae Scenedesmus obliquus. Bioresource Technology, 67, 233-240.
    Maruyama, H., Seki, H., Suzuki, A., 2009. Flotation of blue-green algae using methylated egg ovalbumin. Chemical Engineering Journal, 155(), 49-54.
    Metcaft & Eddy, 2002. Waste Water Engineering – Treatment and Reuse. Mc Graw Hill, 4th.
    Miao, H.F., Tao, W.Y., 2009. The mechanisms of ozonation on cyanobacteria and its toxins removal. Separation and Purification Technology, 66(1), 187–193.
    Miao, X.L., Wu, Q.Y., 2004. High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. Journal of Biotechnology, 110(1), 85-93.
    Mussgnug, J.H., Klassen, V., Schlϋter, A., Kruse, O., 2010. Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. Journal of Biotechnology, 150, 51-56.
    Odlare, M., Nehrenheim, E., Ribe, V., Thorin, E., Gavare, M., Grube, M., 2011. Cultivation of algae with indigenous species-Potentials for regional biofuel production. Applied Energy, 88, 3280-3285.
    Ogbonna, J.C., Yada, H., Masui, H., Tanaka, H., 1996. A novel internally illuminated stirred tank photobioreactor for large-scale cultivation of photosynthetic cells. Journal of Fermentation and Bioengineering, 82(1), 61-67.
    Renault, F., Sancey, B., Badot, P., Crini, G., 2009. Chitosan for coagulation/flocculation processes - An eco-friendly approach. European Polymer Journal, 45(5), 1337-1348.
    Rinaudo, M., 2006. Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31(7), 603-632
    Satyanarayana, K.G., Mariano, A.B., Vargas, J.V.C., 2010. A review on microalgae, a versatile source for sustainable energy and materials. Int. J. Energy Res., 35, 291-311.
    Scragg, A. H., Morrison, J., Shales, S. W., 2003. The use of fuel containing Chlorella vulgaris in a diesel engine. Microbial Technology, 33(7), 884-889.
    Shen, Y.H., 2002. Treatment of low-turbidity water by sweep coagulation using clay. Separation Science and Technology, 37(11), 2739-2744.
    Shen, Q.H., Zhu, J.W., Cheng, L.H., Zhang, J.H., Zhang, Z., Xu, X.H., 2011. Enhanced algae removal by drinking water treatment of chlorination coupled with coagulation. Desalination, 271(1-3), 236-240.
    Ugwu, C.U., Aoyagi, H., Uchiyama, H., 2008. Photobioreactors for mass cultivation of algae. Bioresource Technology, 99, 4021-4028.
    Unduman, N., Qi, Y., Danquah, M. K., Hoadley, A. F. A., 2010. Marine microalgae flocculation and focused beam reflectance measurement. Chemical Engineering Journal, 162(3), 935-940.
    Urum, K., Pekdemir, T., 2004. Evaluation of biosurfactants for crude oil contaminated soil washing. Chemosphere, 57, 1139-1150.
    Wang, L., Min, M., Li, Y., Chen, P., Chen, Y., Liu, Y., Wang, Y., Ruan, R., 2010. Cultivation of green algae Chlorella sp. In different wastewaters from municipal wastewater treatment plant. Appl. Biochem. Biotechnol., 162, 1174-1186.
    Wang, Y., Zhuo, S., Yang, Y., Li, N., 2012. Application of chitosan in removing algae by dissolved air flotation. Advanced Materials Research, 347-353, 1911-1916.
    Widjaja, A., Chien, C.C., Ju, Y.H., 2009. Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. Journal of the Taiwan Institute of Chemical Engineers, 40, 13-20.
    Yun, Y.S., Lim, S.R., Cho, K.K., Park, J.M., 1997. Variations of photosynthetic activity andgrowth of freshwater algae according to ozone contact time in ozone treatment. Biotechnology Letter, 19(9), 831–833.
    Zhao, Y.X., Gao, B.Y., Shon, H.K., Wang, Y., Kim, J.H., Yue, Q.Y., 2011. The effect of second coagulant dose on the regrowth of flocs formed by charge neutralization and sweep coagulation using titanium tetrachloride (TiCl4). Journal of Hazardous Materials, 198, 70-77.

    無法下載圖示 全文公開日期 2017/08/07 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE