簡易檢索 / 詳目顯示

研究生: 蘇義仁
Yi-ren Su
論文名稱: 利用電漿聚合方法製備含胺基與羧基之多層薄膜並探討應用於生醫材料之可行性
Layer-by-layer deposition of amine and carboxylic functionalities by plasma polymerization and to investigate the potential bioapplications
指導教授: 王孟菊
Meng-jiy Wang
口試委員: 魏大欽
Ta-chin Wei
徐振哲
Cheng-che Hsu
黃駿
Huang Chun
何明樺
Ming-hua Ho
周秀慧
Shiu-huey Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 96
中文關鍵詞: 丙烯酸苯胺電漿聚合多層薄膜生物相容性
外文關鍵詞: Aniline, Layer-by-layer deposition, Multilayered thin films
相關次數: 點閱:335下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文利用連續式電漿,以層層交錯的方式沉積丙烯酸與苯胺兩種分別具有羧基與胺基之前驅物,製備含胺基與羧基之多層薄膜,於矽晶圓與聚苯乙烯兩種不同的基材,並利用物理化學方法探討電漿功率、沉積時間等電漿參數與前驅物沉積順序,對於所製備的多層薄膜之厚度、水濕潤性、表面化學官能基與元素組成等性質的影響。
本論文利用電漿聚合所製備之多層薄膜,培養L-929老鼠纖維母細胞進行生物相容性測試,由LDH分析方法定量結果顯示,以電漿製備最外層為20 W ppANI及內層為20 W ppAA之多層薄膜,具有最多的細胞貼附量,其中兩層與四層之多層薄膜:N69/A271以及 (N69/A271)2,其細胞貼附量較未改質之樣本增加101 %與116 %。利用光學顯微鏡與雷射掃描共軛焦分光光譜顯微鏡觀察L-929老鼠纖維母細胞於此形式之多層薄膜的生長情形,結果顯示細胞型態為纖維狀,代表所製備之多層薄膜提供細胞良好的生長環境,細胞具有優異的延展性。此外,亦將此多層薄膜參數改沉積於聚苯乙烯上,發現僅有四層結構之多層薄膜較未改質之聚苯乙烯具有較多的細胞貼附量,藉由此生物相容性測試結果,說明利用電漿聚合方法製備含胺基與羧基之多層薄膜,有助於提升材料之生物相容性且可應用於不同的基材,因此具有應用於生醫材料之潛力。


This thesis proposed the layer-by-layer plasma polymerization method to prepare multilayered thin films containing amine and carboxylic functionalities. The parameters for plasma polymerization for the deposition of aniline and acrylic acid precursors were investigated physical-chemically on the applied plasma power, deposition time, and the orders of precursor for deposition. Moreover, the deposited multilayered thin films were characterized in terms of film thickness, surface wettability, surface functionalities, and chemical compositions.
For the applications of the prepared multilayered thin films, L-929 mouse fibroblasts were directly cultivated on the samples to evaluate the biocompatibility. The results of LDH (lactate dehydrogenase) assay showed that the surfaces prepared by plasma polymerization with different top layer of functionalities revealed distinct responses to cell growth. Among all the samples, the two and four layered thin films, N69/A271 and (N69/A271)2, revealed the most improved cell density that 101 % and 116 % cell density were obtained when compared with the pristine surface. Moreover, the confocal microscopy images also clearly showed that the well extended cell morphology on N69/A271 and (N69/A271)2. In order to prove the applicability of the proposed method for preparing multilayered thin films, the same plasma polymerization parameters were applied on polystyrene for preparing multilayered thin films and the results confirmed that the four-layered multilayered thin films showed higher cell density in comparison with the pristine polystyrene. The overall results indicated that the proposed layer-by-layer plasma polymerization for preparing multifunctional thin films allow to promote biocompatibility and could be successfully applied different substrates for applications in biomaterials.

摘要 I Abstract II 致謝 IV 目錄 VI 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究目標 1 1.3 論文總覽 2 第二章 文獻回顧 3 2.1 多層薄膜 3 2.1.1 多層薄膜之特性及應用 3 2.1.2 多層薄膜之製備方法 4 2.1.3 多層薄膜之生物相容性探討 6 2.2 前驅物簡介 9 2.2.1 丙烯酸介紹 9 2.2.2 苯胺介紹 10 2.3 電漿簡介 11 2.3.1 電漿定義 11 2.3.2 電漿薄膜沉積 12 2.3.3 電漿聚合 12 2.3.3.1 電漿聚合理論 13 2.3.3.2 電漿聚合參數 15 第三章 實驗方法與儀器原理 17 3.1 實驗藥品 17 3.1.1 電漿聚合前驅物 17 3.1.2 細胞培養液所需藥品 17 3.1.3 製備LDH溶液所需藥品 18 3.2 實驗方法 18 3.2.1 射頻電漿系統 18 3.2.2 前驅物校正曲線 20 3.2.3 電漿聚合多層薄膜 20 3.2.3.1 基材準備 21 3.2.3.2 電漿聚合 21 3.2.3.3 電漿腔體清潔 22 3.2.4 物理性質與化學性質分析 22 3.2.5 細胞貼附測試 23 3.2.5.1 細胞培養 23 3.2.5.2 繼代培養 23 3.2.5.3 培養細胞於樣本之上 23 3.3 儀器原理及方法 24 3.3.1 橢圓偏光儀 24 3.3.2 接觸角量測儀 25 3.3.3 原子力顯微鏡 26 3.3.4 全反射式傅立葉紅外線光譜儀 27 3.3.5 化學分析電子能譜儀 27 3.3.6 統計學分析 (statistical analysis) 28 3.4 電漿聚合薄膜之流量校正與多層薄膜樣本之命名 29 第四章 結果與討論 33 4.1 電漿沉積最外層為ppAA之多層薄膜 33 4.1.1 薄膜之厚度 33 4.1.2 薄膜之靜態水接觸角 35 4.1.3 ATR-FTIR分析薄膜之表面化學官能基 36 4.1.4 ESCA分析薄膜之表面化學組成 37 4.2 電漿沉積最外層為ppANI之多層薄膜 40 4.2.1 薄膜之厚度 40 4.2.2 薄膜之靜態水接觸角 42 4.2.3 ATR-FTIR分析薄膜之表面化學官能基 43 4.2.4 ESCA分析薄膜之表面化學組成 45 4.3 含胺基與羧基之多層薄膜的生物相容性測試 48 4.3.1 LDH方法分析電漿沉積最外層為ppAA之多層薄膜細胞貼附量 48 4.3.2 以光學顯微鏡觀察細胞於電漿沉積最外層為ppAA之多層薄膜的生長情形.......... 49 4.3.3 LDH方法分析電漿沉積最外層為ppANI之多層薄膜細胞貼附量 51 4.3.4 以光學顯微鏡觀察細胞於電漿沉積最外層為ppANI之多層薄膜的生長情形.......... 53 4.4 電漿沉積最外層為20 W ppANI、內層為20 W ppAA之多層薄膜探討 56 4.4.1 AFM分析薄膜之表面形態與粗糙度 56 4.4.2 薄膜之動態水接觸角 58 4.4.3 薄膜之高解析C1S特性峰分析 60 4.4.4 以雷射掃描共軛焦分光光譜顯微鏡觀察細胞於薄膜之生長情形 63 4.4.5 薄膜沉積於聚苯乙烯基材 65 第五章 結論與未來展望 66 5.1 含胺基與羧基之多層薄膜的表面分析 66 5.2 含胺基與羧基之多層薄膜的生物相容性測試 67 第六章 參考文獻 68 附錄 (Q&A) 73

1. (a) Jiang, Z.; Jiang, Z.-j.; Shi, Y.; Meng, Y., Preparation and characteristics of acrylic acid/styrene composite plasma polymerized membranes. Applied Surface Science 2010, 256 (21), 6473-6479; (b) Liu, B.; Yang, Y.-H.; Wu, Z.-Y.; Wang, H.; Shen, G.-L.; Yu, R.-Q., A potentiometric acetylcholinesterase biosensor based on plasma-polymerized film. Sensors and Actuators B: Chemical 2005, 104 (2), 186-190.
2. Brinkmann, N.; Sommer, D.; Micard, G.; Hahn, G.; Terheiden, B., Electrical, optical and structural investigation of plasma-enhanced chemical-vapor-deposited amorphous silicon oxynitride films for solar cell applications. Solar Energy Materials and Solar Cells 2013, 108, 180-188.
3. (a) Wang, X.; Grundmeier, G., Surface analytical studies of Ar-plasma etching of thin heptadecafluoro-1-decene plasma polymer films. Applied surface science 2006, 252 (23), 8331-8336; (b) Johnston, E. E.; Bryers, J. D.; Ratner, B. D., Plasma deposition and surface characterization of oligoglyme, dioxane, and crown ether nonfouling films. Langmuir 2005, 21 (3), 870-881.
4. Liu, S.; Vareiro, M. M.; Fraser, S.; Jenkins, A. T. A., Control of attachment of bovine serum albumin to pulse plasma-polymerized maleic anhydride by variation of pulse conditions. Langmuir 2005, 21 (19), 8572-8575.
5. Ai, H.; Jones, S. A.; Lvov, Y. M., Biomedical applications of electrostatic layer-by-layer nano-assembly of polymers, enzymes, and nanoparticles. Cell biochemistry and biophysics 2003, 39 (1), 23-43.
6. Kotov, N., Layer-by-layer self-assembly: the contribution of hydrophobic interactions. Nanostructured Materials 1999, 12 (5), 789-796.
7. Yang, Z.; Lei, X.; Wang, J.; Luo, R.; He, T.; Sun, H.; Huang, N., A novel technique toward bipolar films containing alternating nano–layers of allylamine and acrylic acid plasma polymers for biomedical application. Plasma Processes and Polymers 2011, 8 (3), 208-214.
8. Yang, Z.; Tu, Q.; Wang, J.; Lei, X.; He, T.; Sun, H.; Huang, N., Bioactive Plasma‐Polymerized Bipolar Films for Enhanced Endothelial Cell Mobility. Macromolecular bioscience 2011, 11 (6), 797-805.
9. 林峰輝; 白育綸; 俞耀庭; 張興棟, 生物醫用材料. 新北市. 新文京開發出版股份有限公司 2004.
10. Gancarz, I.; Bryjak, J.; Poźniak, G.; Tylus, W., Plasma modified polymers as a support for enzyme immobilization II. Amines plasma. European polymer journal 2003, 39 (11), 2217-2224.
11. Yang, Z.; Wang, J.; Luo, R.; Maitz, M. F.; Jing, F.; Sun, H.; Huang, N., The covalent immobilization of heparin to pulsed-plasma polymeric allylamine films on 316L stainless steel and the resulting effects on hemocompatibility. Biomaterials 2010, 31 (8), 2072-2083.
12. Vasilets, V.; Hermel, G.; Konig, U.; Werner, C.; Muller, M.; Simon, F.; Grundke, K.; Ikada, Y.; Jacobasch, H.-J., Microwave CO< sub> 2</sub> plasma-initiated vapour phase graft polymerization of acrylic acid onto polytetrafluoroethylene for immobilization of human thrombomodulin. Biomaterials 1997, 18 (17), 1139-1145.
13. Lopez, L.; Gristina, R.; Ceccone, G.; Rossi, F.; Favia, P.; d'Agostino, R., Immobilization of RGD peptides on stable plasma-deposited acrylic acid coatings for biomedical devices. Surface and Coatings Technology 2005, 200 (1), 1000-1004.
14. Mendelsohn, J. D.; Yang, S. Y.; Hiller, J. A.; Hochbaum, A. I.; Rubner, M. F., Rational Design of Cytophilic and Cytophobic Polyelectrolyte Multilayer Thin Films. Biomacromolecules 2002, 4 (1), 96-106.
15. Elbert, D. L.; Herbert, C. B.; Hubbell, J. A., Thin Polymer Layers Formed by Polyelectrolyte Multilayer Techniques on Biological Surfaces. Langmuir 1999, 15 (16), 5355-5362.
16. Vasilev, K.; Poulter, N.; Martinek, P.; Griesser, H. J., Controlled Release of Levofloxacin Sandwiched between Two Plasma Polymerized Layers on a Solid Carrier. ACS Applied Materials & Interfaces 2011, 3 (12), 4831-4836.
17. Lvov, Y.; Ariga, K.; Ichinose, I.; Kunitake, T., Assembly of Multicomponent Protein Films by Means of Electrostatic Layer-by-Layer Adsorption. Journal of the American Chemical Society 1995, 117 (22), 6117-6123.
18. Trau, D.; Renneberg, R., Encapsulation of glucose oxidase microparticles within a nanoscale layer-by-layer film: immobilization and biosensor applications. Biosensors and Bioelectronics 2003, 18 (12), 1491-1499.
19. Roberts, G. G., Langmuir-blodgett films. Plenum press New York: 1990; Vol. 1.
20. Decher, G.; Hong, J.; Schmitt, J., Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin solid films 1992, 210, 831-835.
21. Laschewsky, A.; Wischerhoff, E.; Denzinger, S.; Ringsdorf, H.; Delcorte, A.; Bertrand, P., Molecular recognition by hydrogen bonding in polyelectrolyte multilayers. Chemistry-a European Journal 1997, 3 (1), 34-38.
22. Shimazaki, Y.; Mitsuishi, M.; Ito, S.; Yamamoto, M., Preparation of the layer-by-layer deposited ultrathin film based on the charge-transfer interaction. Langmuir 1997, 13 (6), 1385-1387.
23. Meyer-Plath, A.; Schroder, K.; Finke, B.; Ohl, A., Current trends in biomaterial surface functionalization—nitrogen-containing plasma assisted processes with enhanced selectivity. Vacuum 2003, 71 (3), 391-406.
24. Grant, G. G.; Koktysh, D. S.; Yun, B.; Matts, R. L.; Kotov, N. A., Layer-by-layer assembly of collagen thin films: controlled thickness and biocompatibility. Biomedical Microdevices 2001, 3 (4), 301-306.
25. Ai, H.; Meng, H.; Ichinose, I.; Jones, S. A.; Mills, D. K.; Lvov, Y. M.; Qiao, X., Biocompatibility of layer-by-layer self-assembled nanofilm on silicone rubber for neurons. Journal of neuroscience methods 2003, 128 (1), 1-8.
26. Detomaso, L.; Gristina, R.; d'Agostino, R.; Senesi, G.; Favia, P., Plasma deposited acrylic acid coatings: Surface characterization and attachment of 3T3 murine fibroblast cell lines. Surface and Coatings Technology 2005, 200 (1), 1022-1025.
27. Ko, Y.-M.; Lee, K.; Kim, B.-H., Effect of Mg ion on formation of bone-like apatite on the plasma modified titanium surface. Surface and Coatings Technology 2013, 228, S404-S407.
28. He, T.; Yang, Z.; Chen, R.; Wang, J.; Leng, Y.; Sun, H.; Huang, N., Enhanced endothelialization guided by fibronectin functionalized plasma polymerized acrylic acid film. Materials Science and Engineering: C 2012, 32 (5), 1025-1031.
29. (a) Wan, D.; Yuan, S.; Li, G.; Neoh, K.; Kang, E., Glucose biosensor from covalent immobilization of chitosan-coupled carbon nanotubes on polyaniline-modified gold electrode. ACS applied materials & interfaces 2010, 2 (11), 3083-3091; (b) Yavuz, A. G.; Uygun, A.; Bhethanabotla, V. R., Preparation of substituted polyaniline/chitosan composites by< i> in situ</i> electropolymerization and their application to glucose sensing. Carbohydrate Polymers 2010, 81 (3), 712-719.
30. Airoudj, A.; Debarnot, D.; Beche, B.; Poncin-Epaillard, F., New sensitive layer based on pulsed plasma-polymerized aniline for integrated optical ammonia sensor. Analytica chimica acta 2008, 626 (1), 44-52.
31. Kumar, R.; Singh, S.; Misra, A., Development of NO2 gas sensor based on plasma polymerized nanostructure polyaniline thin film. Journal of Minerals and Materials Characterization and Engineering 2010, 9, 997.
32. Kazimierska, E.; Muchindu, M.; Morrin, A.; Iwuoha, E.; Smyth, M. R.; Killard, A. J., The fabrication of structurally multiordered polyaniline films and their application in electrochemical sensing and biosensing. Electroanalysis 2009, 21 (3‐5), 595-603.
33. Liu, S.; Wang, J.; Zhang, D.; Zhang, P.; Ou, J.; Liu, B.; Yang, S., Investigation on cell biocompatible behaviors of polyaniline film fabricated via electroless surface polymerization. Applied Surface Science 2010, 256 (11), 3427-3431.
34. Humpolicek, P.; Kasparkova, V.; Saha, P.; Stejskal, J., Biocompatibility of polyaniline. Synthetic Metals 2012, 162 (7), 722-727.
35. Yasuda, H., Plasma polymerization. Academic press: 1985.
36. Inagaki, N., Plasma surface modification and plasma polymerization. CRC Press: 1996.
37. Tsaneva, V. N.; Popov, T. K.; Dias, F. M.; Tarte, E. J.; Blamire, M. G.; Evetts, J. E.; Barber, Z. H., Optical emission spectroscopy and Langmuir probe characterisation of the plasma during high-pressure sputter deposition of high-Tc superconducting YBa2Cu3O7−x thin films. Vacuum 2002, 69 (1–3), 261-266.
38. Tibbitt, J.; Jensen, R.; Bell, A.; Shen, M., A model for the kinetics of plasma polymerization. Macromolecules 1977, 10 (3), 647-653.
39. Kobayashi, H.; Bell, A. T.; Shen, M., Formation of an amorphous powder during the polymerization of ethylene in a radio‐frequency discharge. Journal of Applied Polymer Science 1973, 17 (3), 885-892.
40. Yasuda, H.; Hsu, T., Some aspects of plasma polymerization investigated by pulsed RF discharge. Journal of Polymer Science: Polymer Chemistry Edition 1977, 15 (1), 81-97.
41. Favia, P.; d’Agostino, R., Plasma treatments and plasma deposition of polymers for biomedical applications. Surface and coatings Technology 1998, 98 (1), 1102-1106.
42. Song, S. H.; Campbell, S. A., The effect of composition on surface morphology, formation mechanism and pinhole generation of cosputtered ytterbium silicide. Thin Solid Films 2009, 517 (24), 6841-6846.
43. Shen, M.; Bell, A. T. In A review of recent advances in plasma polymerization, American Chemical Society, ACS symposium series, 1979; p 1.
44. Yasuda, H., Magneto luminous chemical vapor deposition. CRC Press: 2011.
45. Della-Bona, A., Characterizing ceramics and the interfacial adhesion to resin: II-the relationship of surface treatment, bond strength, interfacial toughness and fractography. Journal of Applied Oral Science 2005, 13 (2), 101-109.
46. (a) Liu, M.; Tzou, K.; Gregory, R., Influence of the doping conditions on the surface energies of conducting polymers. Synthetic metals 1994, 63 (1), 67-71; (b) Shishkanova, T.; Sapurina, I.; Stejskal, J.; Kral, V.; Volf, R., Ion-selective electrodes: Polyaniline modification and anion recognition. Anal. Chim. Acta 2005, 553, 160-168.
47. Hamerli, P.; Weigel, T.; Groth, T.; Paul, D., Surface properties of and cell adhesion onto allylamine-plasma-coated polyethylenterephtalat membranes. Biomaterials 2003, 24 (22), 3989-3999.
48. Hamdan, M.; Blanco, L.; Khraisat, A.; Tresguerres, I. F., Influence of titanium surface charge on fibroblast adhesion. Clinical implant dentistry and related research 2006, 8 (1), 32-38.
49. Lakard, S.; Morrand-Villeneuve, N.; Lesniewska, E.; Lakard, B.; Michel, G.; Herlem, G.; Gharbi, T.; Fahys, B., Synthesis of polymer materials for use as cell culture substrates. Electrochimica Acta 2007, 53 (3), 1114-1126.

無法下載圖示 全文公開日期 2019/08/05 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE