簡易檢索 / 詳目顯示

研究生: 劉家和
Chia-He Liu
論文名稱: 質子交換膜燃料電池系統控制
Control of Proton Exchange Membrane Fuel Cell Systems
指導教授: 周宜雄
Yi-Shyong Chou
口試委員: 陳榮輝
Jung-Hui Chen
錢義隆
I-Lung Chien
王逢盛
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 121
中文關鍵詞: 燃料電池控制質子交換膜燃料電池
外文關鍵詞: Control, Fuel Cell, PEMFC
相關次數: 點閱:284下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近幾年來,燃料電池已經廣泛運用在許多領域,如電池、發電場、汽機車動力…等。由於學術研究的目的不同,所以燃料電池的數學模式建立也因研究目的不同而有所發展。為了探討燃料電池內部機構與流場設計,所以此部份的研究大多以非線性的偏微分方程式出發,藉此瞭解單一個燃料電池的質傳、熱傳與電化學反應方面的行為,藉由嚴謹的數學模式可以深入瞭解內部輸送現象。但是大量的運算成本且冗長的計算結果往往造成動態分析上的困難。除利用快速且有效的數值方法加以輔助外,也應透過適度簡化而適宜可靠的數學模式,來探討系統整合及控制系統設計的問題。本論文採用文獻所中所建立的數學模式,以經驗式及半經驗式建構系統的數學模式,從鉅觀的角度來瞭解燃料電池組在操作方面的問題。期望透過動態的模擬,可以提供對於燃料電池組實體的設計與改善有良好的建議。氧氣枯竭現象的發生,將對於系統的高分子薄膜造成嚴重的損傷,因此在本論文中我們將著重在於如何藉由控制架構的設計來避免氧氣枯竭現象的發生,透過建立有效的控制架構,以期避免此一影響系統甚鉅的現象發生。


Abstract
In recent years, the fuel cell has been used widely in many fields such as battery, power plant, the power of motors . Because of the academic research difference, the mathematical model of fuel cell has been developed gently. Most of the research are based on non-linear parial differential equation for studying the inner mechanizer of fuel cell and the flow field design and we could realize simply and deeply about the inner transfer phenomena (mass transfer, heat transfer and the elechemistry reaction behavior of a fuel cell )by a rigorous mathematical model. But the bulk calculating costs and the verbose results cause the difficulty of the dynamic analysis. Not only using the fast and efficiency mathematical method but also the over-simply and realizable math mode to support the studying of the system integration & the problem of control system design.Here,we will take the mathematical eauations from the previous papers.We will not only try to realize some operating problems of the fuel cell stack from macroscopic view base on semi-emperical & empirical equations,but also offering some good suggestions to the stack design via the system dynamic simulations.Oxygen starvation phenomena will seriously damage the polymer membrane of the system.In this paper,we will focus on how to prevent the oxygen starvation occurs by designing the control structure.We hope the serious phenomena would not happen in our system by developing efficiency control structure.

目 錄 中文摘要 i 英文摘要 ii 誌謝 iii 目錄 iv 圖表索引 vii 第一章 緒論 1-1 能源問題 1 1-2 清潔程序 2 1-3 燃料電池 3 1-3.1 燃料電池發展歷史 3 1-3.2 燃料電池分類 4 1-3.3 燃料電池作動原理 8 1-4 研究動機 9 1-5 論文章節組識安排 10 第二章 質子交換膜燃料電池系統 2-1 前言 11 2-2 質子交換膜燃料電池介紹 11 2-2.1 流場板 13 2-2.2 擴散層 14 2-2.3 觸媒層 15 2-2.4 高分子薄膜 16 2-3 燃料電池組運作系統介紹 17 2-3.1 壓縮機 18 2-3.2 增濕器 18 2-3.3 冷卻器 18 2-3.4 高壓氫氣鋼瓶 19 2-3.5 燃料電池組核心部份 19 2-4 質子交換膜燃料電池系統操作問題 20 2-4.1 極化曲線與過電位 21 2-4.2 氧氣過量比問題 25 2-4.3 高分子薄膜潤濕問題 26 2-4.4 氧氣枯竭問題 27 2-5 結論 28 第三章 數學模式的建立 3-1 前言 29 3-2 數學模式之假設 30 3-3 統御方程式 31 3-3-1 陰極端 33 3-3.2 陽極端 36 3-3.3 高分子薄膜 38 3-3.4 壓縮機 41 3-3.5 連接壓縮機與陰極的輸送管線 44 3-3.6 冷卻器 46 3-3.7 增濕器 47 3-3.8 連接外界與陰極的輸送管線 48 3-4 極化曲線數學經驗式 50 3-4.1 活化過電位經驗式 51 3-4.2 歐姆過電位經驗式 52 3-4.3 濃度過電位經驗式 53 3-5 系統輸出電壓與輸出功率計算 53 3-5.1 燃料電池組輸出電壓 53 3-5.2 燃料電池組輸出功率 54 3-6 結論 54 第四章 質子交換膜燃料電池系統控制問題 4-1 前言 55 4-2 操作問題的改善 55 4-2.1 極化問題的改善 56 4-2.2 氧氣過量比問題的改善 56 4-2.3 薄膜潤濕問題的改善 57 4-2.4 氧氣枯竭問題的改善 58 4-3 文獻回顧 59 4-4 燃料電池組控制問題 59 4-4.1 溫度與壓力控制問題 60 4-4.2 水管理控制問題 62 4-4.3 氧氣過量比控制問題 63 4-4.4 氧氣枯竭控制問題 63 4-5 結論 64 第五章 氧氣枯竭問題解決與控制 5-1 前言 65 5-2 先前的研究 66 5-2.1 模式判別 67 5-2.2 前饋控制器 68 5-2.3 回饋控制器 71 5-3 解決方案一 72 5-3.1 前饋與回饋控制器外加數位濾波器 74 5-3.2 前饋與回饋控制器外加線性函數濾波器 77 5-3.3 前饋與回饋控制器外加超越函數濾波器 79 5-3.4 前饋與回饋控制器外加負載管理 83 5-4 解決方案二 90 5-4.1 回饋控制器參數調諧 91 5-4.2 超越函數負載管理 92 5-4.3 回饋控制器外加超越函數負載管理 93 5-5 比較不同的解決方案 101 5-6 結論 103 第六章 總結與未來展望 6-1 總結 104 6-2 未來展望 105 符號說明 106 參考文獻 110 附錄A 控制器參數調諧方法 115 附錄B 系統開環測試 115

參考文獻:
1. Ahluwalia, R. K., Wang, X., 2005. Direct hydrogen fuel cell systems for hybrid vehicles. Journal of Power Sources 139, 152-164.
2. Amphlett, J. C., Baumert, R. M., Mann, R. F., Peppley, B. A., Roberge, P. R., Rodrigues A.,1994. Parametric modeling of the performance of a 5-kw proton exchange membrane fuel cell stack. Journal of Power Sources 49, 349-356.
3. Amphlett, J. C., Baumert, R. M., Mann, R. F., Peppley, B. A., Roberge, P. R., 1995. Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell. Journal of The Electrochemical Society 142, 9-15.
4. Ahluwalia, R. K., Wang, X., 2005. Direct hydrogen fuel cell systems for hybrid vehicles. Journal of Power Sources 139 , 152-164.
5. Andrew, R., Xianguo, L., 2001. Mathematical modeling of proton exchange membrane fuel cells. Journal of Power Sources 102 , 82-96.
6. Barbir, F., Gorgun, H., Wang, X.,2005. Relationship between pressure drop and cell resistance as a diagonstic tool for PEM fuel cells. Journal of Power Sources 141 , 96-101.
7. Bernardi, D. M., Verbrugge, M.W., 1992. A mathematical model of the solid-polymer-electrolyte fuel cell. Journal of The Electrochemical Society 139, 2477-2491.
8. Berning, T., Lu, D. M., Djilali, N., 2002. Three-dimensional computional analysis of transport phenomena in a PEM fuel cell. Journal of Power Sources 106 , 284-294.
9. Bird, R. B., Stewart, W. E., and Lightfoot, E. N., 1960. Transport Phenomena. New York: Wiley.
10. Caux, S., Lachaize J., Fadel, M., Shott, P., Nicod, L., 2005. Modeling and control of a fuel cell system and storage elements in transport applications. Journal of Process Control 15 , 481-491.
11. Chen, F., Chu H. S., Soong, C.Y., Yan, W. M., 2005. Effective schemes to control the dynamic behavior of the water transport in the membrane of PEM fuel cell. Journal of Power Sources 140, 243-249
12. Cunnungham, J. M., Hoffman, M. A., Moore, R. M., Friedman, D. J., 1999. Requirements for a flexible and realistic air supply model for incorporation into a fuel cell vehicle(FCV) system simulation. SAE 01 (2912) , 3191-3196.
13. Dannenberg, K. , Ekdunge, P. , Lindbergh G., 2000. Mathematical model of the PEMFC. Journal of Applied Electrochemistry 30 , 1377-1387.
14. Dutta, S., Shimpalee, S., Van Zee, J.W., 2001. Numerical prediction of mass-exchange between cathode and anode channels in a PEM fuel cell. International Journal of Heat and Mass Transfer 44 , 2029-2042.
15. Eckl, R., Zehtner, W., Leu, C., Wagner, U., 2004. Experimental analysis of water management in a self-humidifying polymer electrolyte fuel cell stack. Journal of Power Sources 138 , 137-144.
16. Edson, A. T., Charles, R. D., Supramaniam, S., 1988. Localization of platinum in low catalyst loading electrodes to attain high power densities in SPE fuel cells. Journal of Electroanalysis Chemistry 251 , 275-295.
17. Eriksson, L., Nielsen, L., Brugard, J., Bergstrom, J., Pettersson, F., Andersson, P., 2002. Modeling of a turbocharged SI engine. Annual Reviews in Control 26 , 129-137.
18. Ferng,Y. M., Tzang, Y. C., Pei, B. S., Sun, C. C., Su, A., 2004. Analytical and expermential investigations of a proton exchange membrane fuel cell. International Journal of Hydrogen Energy 29 , 381-391.
19. Gelfi, S., Stefanopoulou, A.G., Pukrushpan, J. T., Peng H., Dynamics of low-pressure and high-pressure fuel cell air supply system. Automotive Research Center , University of Michigan , Ann Arbor , MI 48109.
20. Golbert, J., Lewin, D. R., 2004. Model-base control of fuel cells : regulatory Control. Journal of Power Sources 135 , 135-151.
21. Guzzella, L., 1999. Control oriented modeling of fuel-cell based vehicles. Presented in NSF workshop on the integration of modeling and control for automotive systems
22. Gregor, H.,2003. Fuel Cell Technology Handbook. Florida: CRC Press
23. Haraldsson, K., Wipke, K., 2004. Evaluting PEM fuel cell system models. Journal of Power Sources 126 , 88-97.
24. Hsing, I. M., Futerko, P., 2000. Two-dimensional simulation of water transport in polymer electrolyte fuel cells. Chemical Engineering Science 55 , 4209-4218.
25. Hu, G., Fan, J., Chen, S., Liu, Y., Cen K., 2004. Three-dimensional numerical analysis of proton exchange membrane fuel cells (PEMFCs) with conventional and interdigitated flow fields. Journal of Power Sources 136 , 1-9.
26. Husain, I.,2003. Electric and Hybrid Vehicles Design Fundamentals. New York: CRC Press
27. James, A. A., Yang, W.C., Oglesby, K A., Osborne, K. D., 2000. The development of Ford`s p2000 fuel cell vehicle. SAE 01 (1061), 1634-1645.
28. Jen, T. C., Yan, T., Chan, S. H., 2003. Chemical reacting transport phenomena in a PEM fuel cell. International Journal of Heat and Mass Transfer 46 , 4157-4168.
29. Jensen, J. P., Kristensen, A. F., Sorenson, S. C., Houbak, N., Hendricks, E.,1991. Mean value modeling of a small turbocharged diesel engine. SAE 910070.
30. Karimi, G., Li, X., 2005. Electroosmotic flow through polymer electrolyte membranes in PEM fuel cell. Journal of Power Sources 140 , 1-11.
31. Kumar A. , Reddy R.G., 2003. Modeling of polymer electrolyte membrane fuel cell with metal foam in the flow-field of the bipolar/end plates. Journal of Power Sources 114 , 54-62
32. Larminie, J., Lowry, J., 2003. Electric Vehicle Technology. England: Wiley
33. Laurencelle, F., Chahin, R., Hamelin, J., Agbossou, K., Fournier, M., Bose, T. K., Laperriere, A., 2001. Characterization of a Ballard MK5-E proton exchange membrane fuel cell stack. Fuel Cells Journal 1, 66-71
34. Lee, J. H., Lalk, T. R., Appleby, A. J., 1998. Modeling electrochemical performance in large scale proton exchange membrane fuel cell stacks. Journal of Power Sources 70, 258-268.
35. Mann R. F., Amphlett J. C., Hooper M. I., Jensen H. M., Peppley B. A., Roberge P. R., 2000. Development and application of a generalised steady-state electrochemical model for a PEM fuel cell. Journal of Power Sources 86 , 173-180.
36. Mishra, V., Yang F., Pitchumani R., 2005. Analysis and design of PEM fuel cells. Journal of Power Sources 141 , 47-64
37. Moraal, P., Kolmanovsky, I. 1999. Turbocharger modeling for automotive control applications. SAE 01 (0908) , 1324-1338
38. Moore, R. M., Hauer, K. H., Friedman, D., Cunningham, J., Badrinarayanan, P., Ramaswamy, S., Eggert A., 2005. A dynamic simulation tool for hydrogen fuel cell vehicles. Journal of Power Sources 141 , 272-285.
39. Moore, R. M., Gottesfeld, S., Zelenay, P., 1999. A fuel control strategy that optimizes the efficiency of a direct-methanol fuel cell in an automotive application. SAE 01 (2913) , 3197-3202.
40. Nguyen, T. V., Knobbe, M. W., 2003. A liquid management strategy for PEM fuel cell stacks.Journal of Power Sources 114 , 70-79.
41. Nguyen, T. P. , Berning, T., and Djilali, N., 2004. Computational model of a PEM fuel cell with serpentine gas flow channels. Journal of Power Sources 130 , 149-157.
42. Okada, T., 1999. Theory for water management in membranes for polymer electrolyte fuel cells. Journal of Power Sources 465 , 1-17.
43. Pischinger, S., Schonfelder, C., Bornscheuer, W., Kindl, H., Wiartalla, A., 2001. Integrated air supply and humidification concepts for fuel cell systems. SAE 01 (0233) , 86-92.
44. Pukrushpan, J. T., Peng, H., Stefanopoulou, A.G..2002. Modeling and control for PEM fuel cell stack system. Proceedings of the American Control Conference , Anchorage , AK May 8-10.
45. Pukrushpan J. T., Peng H., Stefanopoulou A.G. 2004.Control -oriented modeling and analysis for automotive fuel cell systems.Transactions of the ASME 126 , 14-25
46. Pukrushpan J. T., Peng H., Stefanopoulou A.G. 2004.Control of fuel cell breathing. IEEE Control System Magazine , 30-46.
47. Rajalakshmi, N., Jayanth, T. T., Thangamuyhu, R., Sasikumar, G., Sridhar, P., Dhathathreyan, K. S., 2004. Water transport characteristics of polymer eectrolyte mmbrane fel cll. International Journal of Hydrogen Energy 29 , 1009-1014.
48. Sun J., Kolmanovsky I.,2004. Load governor for fuel cell oxygen starvation protection : a robust nonlinear reference governor approach. Proceeding of the 2004 American Control Conference , 828-833
49. Siegel, N. P., Ellis, M. W., Nelson, D. J., Spakovsky, M.R., 2004. A two-dimensional computional model of a PEMFC with liquid water transport. Journal of Power Sources 128 , 173-184.
50. Silva, R.F., Francesco, M. D., Pozio, A., 2004. Tangential and normal conductivities of nafion membranes used in polymer electrolyte fuel cells. Journal of Power Sources 134 , 18-26.
51. Springer, T. E., Zawodzinski, T. A., and Gottesfeld, S., 1991. Polymer electrolyte fuel cell model. Journal of The Electrochemical Society 138 , 2334-2342.
52. Um, S., Wang, C.Y., and Chen, K.S., 2000. Computional fluid dynamics modeling of proton exchange membrane fuel cells. Journal of The Electrochemical Society 147 , 4485-4493.
53. Vahidi, A., Stefanopoulou, A.G., Peng H., 2004. Model predictive control for starvation prevention in a hybrid fuel cell system. American Control Conference..
54. Vielstich, W., Lamm, A., Gasteiger, H. A.,2003. Handbook of Fuel Cells : fundamentals technology and applications. England: Wiley
55. Wang, L., Hongtan, L., 2004. Performance studies of PEM fuel cells with interdigitated flow fields. Journal of Power Sources 134 , 185-196.
56. Wang, L., Husar, A., Zhou, T., Liu, H., 2003. A parametric study of PEM fuel Cell performance. International Journal of Hydrogen Energy 28 , 1263-1272.
57. Westbrook, M.H., “The Electric Car Development and Future of Battery , Hybrid and Fuel-Cell Cars”,IEE Power and Energy Series 38
58. Yang, W. C., Bates, B., Fletcher, N., Pow, R., 1998. Control challenges and methodologies in fuel cell vehicle development. SAE 98C054
59. Yerramalla, S., Davari, A., Feliachi, A., Biswas, T., 2003. Modeling and simulation of the dynamic behavior of a polymer electrolyte membrane fuel cell. Journal of Power Sources 124 , 104-113.
60. 曾重仁, 羅世坤, 直接甲醇型燃料電池(DMFC)與氫氣質子交換膜燃料電池(PEMFC), 化工技術期刊 2004年 4月號 p165-179

QR CODE