簡易檢索 / 詳目顯示

研究生: 葉威廷
Wei-Ting Yeh
論文名稱: A508與Inconel 52M鎢極氣體保護電弧銲與電漿轉移電弧覆銲後之微觀結構與腐蝕特性
Microstructure and Corrosion Behavior of Dissimilar Gas Tungsten Arc Welding and Plasma Transferred Arc Overlay and Plasma Transferred Arc Overlay Weld between A508 and Inconel 52M
指導教授: 王朝正
Chaur-Jeng Wang
口試委員: 鄭偉鈞
Wei-Chun Cheng
程金保
Chin-Pao Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 109
中文關鍵詞: 鎢極氣體保護電弧銲電漿轉移電弧銲鎳基 52MA508微觀結構動電位極化
外文關鍵詞: GTAW, PTAW, Inconel 52M, A508, Microstructure, Dynamic potential
相關次數: 點閱:264下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以A508為底材,覆銲層為Inconel 52M,藉由GTAW及PTAW兩種不同之銲接工法,由Half Weld-bead之銲接方式,在A508表面,覆銲不同層數及不同道次之Inconel 52M覆銲層,探討不同銲接工法及不同銲接參數,對於底材及覆銲層之顯微結構影響。並於3.5 wt.% 鹽水環境中進行動電位試驗,測驗A508底材及52M覆銲層不同區域之常溫抗蝕能力。
實驗結果顯示,GTAW及PTAW兩種銲接工法,於A508熱影響區中,熱影響範圍最深不會超過第一層覆銲層所造成之熱影響範圍,下一道次之入熱量,會使前一道次之熱影響區再次受熱,微觀組織晶粒細化。在覆銲層銲冠處產生富Cr之相,對於搭接下一道次有不良的影響。動電位試驗中,銲道之抗蝕能力優於熱影響區;單道次銲道及叁層覆銲後銲道相比,隨著覆銲層數增加,覆銲層中Ni與Cr的含量愈外層愈高。後續覆銲時,因為局部重融,可使前一層熔融區中的Ni與Cr成分上升,腐蝕電位也隨之上升,抗蝕能力增加。


In this study, cladding layer of Inconel 52M was deposited on A508 substrate material. Several layers and passes of Inconel 52M were welded on the surface of A508 by Half Weld-bead method using two welding processes namely GTAW and PTAW. Different welding methods and different welding parameters were found to have some effects on the microstructure of both the substrate material (A508) and the cladding layer (Inconel 52M). Dynamic potential test was carried out using 3.5 wt.% NaCl to check corrosion resistance on the cladding layer of Inconel 52M in comparison to the substrate material A508.
The experimental results for both welding methods of GTAW and PTAW shows that, the heat affected zone (HAZ) on the substrate material is maximum in depth during the first layer cladding. With the subsequent cladding layers, HAZ on the substrate material due to thermal impact become less and less as the number of layers increases. On the other hand, it was observed that the next pass affect the grain refinement of the previous pass. Chromium segregation at the surface boundary of each pass has negative impact on both the microstructure and strength of the entire cladding. Dynamic potential test shows better corrosion resistance on the weld bead layer of Inconel 52M compared to the heat affected zone and the substrate material A508. Comparison of single layer to three layers, welding shows contents of Cr and Ni increases with the number of layers. Thus less in single layer but more in three layers due to rise of Ni and Cr in each layer deposits as the remelt takes place. Increased number of layers also shows increased corrosion resistance.

第一章 前言.................1 第二章 文獻回顧.............3 2.1 電弧銲接................3 2.2 鎢極氣體保護電弧銲......4 2.2.1 GATW銲接參數特性......5 2.2.2 GTAW銲接之優缺點......6 2.3 電漿轉移電弧銲..........7 2.4 覆銲工法................9 2.5 銲接理論...............11 2.5.1 組成過冷及凝固模式...11 2.5.2 銲接裂縫.............15 2.6 異質銲接...............18 2.7 電化學腐蝕.............20 2.7.1 混合電位原理.........21 2.7.2 極化曲線.............21 第三章 實驗方法.............23 3.1 實驗流程...............23 3.2 材料組成及試片製備.....24 3.3 鎢極氣體保護電弧銲.....26 3.4 電漿轉移電弧銲.........27 3.5 覆銲層之規劃與命名.....28 3.6 液滲檢測...............30 3.7 電化學試驗.............31 3.8 微硬度試驗.............32 3.9 微觀分析方法與設備.....32 第四章 實驗結果與討論.......34 4.1 單道次銲接.............34 4.1.1 銲接結果.............34 4.1.1.1 入熱量及稀釋率.....34 4.1.1.2 銲接顯微組織.......35 4.1.1.3 微硬度.............36 4.1.1.4 銲道析出物.........37 4.1.2 銲接參數之影響.......38 4.1.2.1 稀釋率.............38 4.1.2.2 微觀組織...........39 4.1.2.3 微硬度.............40 4.2 單層多道次覆銲.........54 4.2.1 覆銲結果.............54 4.2.1.1 稀釋率.............54 4.2.1.2 微觀組織...........55 4.2.1.3 微硬度.............56 4.2.2 銲接參數之影響.......56 4.2.2.1 稀釋率.............56 4.2.2.2 微觀組織...........57 4.2.2.3 微硬度.............58 4.3 叁層多道次覆銲.........65 4.3.1 覆銲結果.............65 4.3.1.1 稀釋率.............65 4.3.1.2 微觀組織...........65 4.3.1.3 微硬度.............67 4.3.1.4 介面與裂縫.........68 4.3.1.5 析出物.............69 4.3.2 銲接參數之影響.......70 4.3.2.1 稀釋率.............70 4.3.2.2 微觀組織...........71 4.3.2.3 微硬度.............72 4.3.2.4 銲接裂縫...........73 4.4 PTAW及GTAW之特性差異...85 4.4.1 入熱量及稀釋率.......85 4.4.2 微觀組織.............85 4.4.3 微硬度...............86 4.5 電化學特性.............89 第五章 結論................93 參考文獻...................94 附錄A.1 PTAW銲接參數......100 附錄A.2 GTAW銲接參數......105 附錄B 液滲檢查結果........107

[1]B. Grimmel and W. H. Cullen, "Plant Experience with Alloy 600 Cracking and Boric Acid Corrosion of Light–Water Reactor Pressure Vessel Materials," Division of Engineering Technology Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, 2005.
[2]S.L. Jeng and Y.-H. Chang, "Microstructure and flow behavior of Ni–Cr–Fe welds with Nb and Mo additions," Materials Science and Engineering: A, vol. 560, pp. 343-350, 2013.
[3]R. A. Page, "Stress Corrosion Cracking of Alloys 600 and 690 and Nos. 82 and 182 Weld Metals in High Temperature Water," Corrosion, vol. 39, pp. 409-421, 1983.
[4]Q. Y. Hou, J. S. Gao, and F. Zhou, "Microstructure and wear characteristics of cobalt-based alloy deposited by plasma transferred arc weld surfacing," Surface and Coatings Technology, vol. 194, no. 2-3, pp. 238-243, 2005.
[5]R. Iakovou, L. Bourithis, and G. Papadimitriou, "Synthesis of boride coatings on steel using plasma transferred arc (PTA) process and its wear performance," Wear, vol. 252, no. 11-12, pp. 1007-1015, 2002.
[6]G. A. Young, T. E. Capobianco, M. A. Penik, B. W. Morris, and J. J. Mcgee, "The Mechanism of Ductility Dip Cracking in Nickel-Chromium Alloys," Welding Journal, vol. 87, no. 2, pp. 31-43, 2008.
[7]黃俊源、楊明宗、鄭勝隆、黃俊雄、葉基榮、郭榮卿,核電廠反應器穿越管合金A152/A52特性研究及運轉報告,民國98年。
[8]S. Kou, Welding Metallurgy, Wiley Interscienc, 2nd Edition, 2002.
[9]R. Singh, Applied Welding Engineering (Second Edition). Butterworth-Heinemann, 2015.
[10]周長彬、蔡丕椿、郭央諶,"銲接學",全華科技,民國77年。
[11]李隆盛,"銲接實習",全華圖書,民國97年。
[12]王振欽,"銲接學",登文書局,民國82年。
[13]鄭勝隆,"鎳基合金與不銹鋼異種金屬銲接特性與微結構研究",國立成功大學機械工程學系博士論文,民國92年。
[14]吳隆佃,"PTA銲接法製程特性與其應用",銲接與切割, 第1卷, 第39 ~ 44頁,民國80年。
[15]H. T. Cao, X. P. Dong, Z. Pan, X. W. Wu, Q. W. Huang, and Y. T. Pei, "Surface alloying of high-vanadium high-speed steel on ductile iron using plasma transferred arc technique: Microstructure and wear properties," Materials & Design, vol. 100, pp. 223-234, 2016.
[16]K. Weman, "Welding Processes Handbook (Second Edition) ", Woodhead Publishing, 2011.
[17]J. Y. Huang, T. Y. Yung, J. S. Huang, and R. C. Kuo, "Effects of heat treatment and chromium content on the environmentally assisted cracking behavior of the dissimilar metal welds in simulated BWR coolant environments," Corrosion Science, vol. 75, pp. 386-399, 2013.
[18]G. Bao, K. Shinozaki, S. Iguro, M. Inkyo, M. Yamamoto, Y. Mahara,H. Watanabe, "Stress corrosion cracking sealing in overlaying of Inconel 182 by laser surface melting," Journal of Materials Processing Technology, vol. 173, no. 3, pp. 330-336, 2006.
[19]S. Wu, H. Jin, Y. Sun, and L. Cao, "Critical cleavage fracture stress characterization of A508 nuclear pressure vessel steels," International Journal of Pressure Vessels and Piping, vol. 123-124, pp. 92-98, 2014.
[20]T. Lant, D. L. Robinson, B. Spafford, and J. Storesund, "Review of weld repair procedures for low alloy steels designed to minimise the risk of future cracking," International Journal of Pressure Vessels and Piping, vol. 78, no. 11-12, pp. 813-818, 2001.
[21]D. J. Allen, and T. W. Kelly, "Cold weld repair-development and application," presented at the 2nd International EPRI Conference and Vendor exposition, Dayton Beach, Florida, 1996.
[22]R. E. Gold, D. L. Harrod, R. G. Aspden, and A. J. Baum, "Alloy 690 for Steam GeneratorTubing Applications," Westinghouse Electric Corporation Pittsburh (USA), 1990.
[23]W. Wu and C. H. Tsai, "Hot cracking susceptibility of fillers 52 and 82 in alloy 690 welding," Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, vol. 30, no. 2, pp. 417-426, 1999.
[24]L. Karlsson, "Welding of dissimilar metals," Welding in the World, vol. 36, pp. 125-132, 1995.
[25]S. Kou, "Solidification and liquation cracking issues in welding," Jom, vol. 55, no. 6, pp. 37-42, 2003.
[26]黃朝鈿,"SUS316L被覆Inconel52M機械性質研究",國立台灣科技大學機械所碩士論文,民國98年。
[27]A. Hunt, A. O. Kluken, and G. R. Edwards, "Heat Input and Dilution Effects in Microalloyed Steel Weld Metals," 1994.
[28]柯賢文、王朝正,"腐蝕及其防治",全華圖書,民國103年。
[29]Application Note CORR-1. ,"Ameteksi",資料來源: http://www.ameteksi.com/library/application-notes/princeton-applied-research,2015.
[30]G. Li, M. Zhang, J. Huang, Z. Sun, and Y. Wu, "A comparative study on microstructure and properties of Inconel 52M overlays deposited by laser beam and GTA cladding," The International Journal of Advanced Manufacturing Technology, vol. 81, no. 1-4, pp. 103-112, 2015.
[31]C.-M. Lin, T.-L. Su, and K.-Y. Wu, "Effects of parameter optimization on microstructure and properties of GTAW clad welding on AISI 304L stainless steel using Inconel 52M," The International Journal of Advanced Manufacturing Technology, vol. 79, no. 9-12, pp. 2057-2066, 2015.
[32]R. L. Bodnar and S. S. Hansen, "Effects of austenite grain size and cooling rate on Widmanstätten ferrite formation in low-alloy steels," Metallurgical and Materials Transactions A, vol. 25, no. 4, pp. 665-675, 1994.
[33]周佑融、王家祥、吳威德,"熱處理溫度對低碳鋼銲件應力消除與微觀組織之研究",民國103年。
[34]S.L. Jeng and Y.H. Chang, "The influence of Nb and Mo on the microstructure and mechanical properties of Ni–Cr–Fe GTAW welds," Materials Science and Engineering: A, vol. 555, pp. 1-12, 2012.
[35]W. F. Savage, C. D. Lundin, and R. J. Hrubec, "Segregation and Hot Cracking in Low Alloy Quench and Tempered Steels," Welding Journal, vol. 47, pp. 420-425, 1968.
[36]A. J. R. Loureiro, "Effect of heat input on plastic deformation of undermatched welds," Journal of Materials Processing Technology, vol. 128, no. 1-3, pp. 240-249, 2002.
[37]O. Grong and D. K. Matlock, "Microstructural development in mild and low-alloy steel weld metals," International Metals Reviews, vol. 31, no. 1, pp. 27-48, 1986.
[38]林岡正,"SUS316L被覆鎳基合金Inconel52M及Inconel82之拉伸與腐蝕性研究",國立台灣科技大學機械所碩士論文,民國99年。
[39]B. A. Soares, M. M. d. A. M. Schvartzman, and W. R. d. C. Campos, "Characterization Of The Dissimilar Welding - Austenitic Stainless Steel With Filler Metal Of The Nickel Alloy," presented at the International Nuclear Atlantic Conference Brazil, 2007.
[40]B. T. Alexandrov, A. T. Hope, B. J. Sutton, J. C. Lippold, J. W. Sowards, and S. L. McCracken, "Susceptibility to Solidification Cracking in High Chromium Nickel-Base Filler Metals for Nuclear Power Applications," 2012.
[41]張育賢,"冷卻條件對SUS316L被覆Inconel52M之機械與腐蝕性質影響",國立台灣科技大學機械所碩士論文,民國99年。
[42]A. Mortezaie and M. Shamanian, "An assessment of microstructure, mechanical properties and corrosion resistance of dissimilar welds between Inconel 718 and 310S austenitic stainless steel," International Journal of Pressure Vessels and Piping, vol. 116, pp. 37-46, 2014.

QR CODE