簡易檢索 / 詳目顯示

研究生: 劉浩辰
Hao-Chen Liu
論文名稱: 三氯矽甲烷/氫氣-化學氣相沉積當量組成碳化矽薄膜的反應動力模型化
Reaction Kinetic Modeling of Stoichiometric SiC Film Growth Using Methyltrichlorosilane and Hydrogen as Reactants
指導教授: 洪儒生
Hong-Lu Sheng
口試委員: 洪儒生
Hong-Lu Sheng
江志強
Jyh-Chiang Jiang
楊博斐
Po-Fei Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 85
中文關鍵詞: 碳化矽熱壁式化學氣相沉積法三氯矽甲烷反應動力學
外文關鍵詞: SiC, hot wall CVD, methyltrichlorosilane, reaction kinetics
相關次數: 點閱:258下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中針對三氯矽甲烷(MTS)為原料在氫氣氣氛下化學氣相沉積β相碳化矽薄膜的反應機制進行量化模型之探討。首先以一簡化的模型,即僅考慮MTS氣相解離生成一中間產物並貢獻長膜的逐次反應型式,對熱壁式水平圓管反應器內隨著反應滯留時間方向的薄膜成長速率分布數據進行模型擬合。對於改變反應管溫度由950到1050°C時均溫區域段0.5 s滯留時間內的量論組成碳化矽長膜的模型擬合結果發現,決定長膜速率的第一步驟確實為MTS的氣相解離反應(活化能約67 kcal/mol),又生成的中間產物之表觀表面附著機率隨反應溫度升高由5.5 × 10-4增加到8.9 × 10-4 (活化能約17.2 kcal/mol),顯示出中間產物擴散到基材表面後的表面反應為控制長膜的第二步驟。
    進一步對於不同[H2]/[MTS]進料濃度比下水平圓管反應器內隨著反應滯留時間方向的薄膜成長速率分布進行模型擬合後發現,三氯矽甲烷與氫氣在氣相中的逐次反應對氫氣濃度呈0.5次方的反應次數,顯示反應物在氣相中至少生成兩種氣態中間體,分別對應之表面附著機率為4.6×10-4和5.1×10-2,並同時貢獻於碳化矽的薄膜成長。我們輔以量子化學模擬原料之間的氣相分解反應發現,三氯矽甲烷可能先氣相解離掉氯化氫形成具π鍵的1,1-二氯矽烷分子(對應到較小的附著機率),之後與氫氣產生自由基鏈鎖反應並脫氯形成自由基物種(對應到較大的附著機率)。而這些氣相中間體持恆的1:1碳矽原子比應為導致當量組成碳化矽薄膜生成的主要原因。


    This paper investigates the modeling of the reaction mechanism for the chemical vapor deposition of beta-phase silicon carbide films using methyltrichlorosilane (MTS) as the precursor in a hydrogen ambiance. Initially, a simplified model was employed, considering only the gas-phase dissociation of MTS to produce an intermediate species and its consecutive reactions contributing to the film growth rate along the direction of the reaction residence time in a hot-wall horizontal tube reactor. The model was fitted to the experimental data of the film growth rate distribution under varying reaction temperatures from 950 to 1050°C, with a residence time of 0.5 s in the uniform temperature zone. The results of the model fitting revealed that the first step determining the film growth rate is indeed the gas-phase dissociation of MTS (activation energy approximately 67 kcal/mol). The apparent sticking probability of the intermediate species increased from 5.5 × 10-4 to 8.9 × 10-4 as the reaction temperature increased (activation energy approximately 17.2 kcal/mol), indicating that the surface reaction of the intermediate species after diffusing to the substrate surface controls the second step of film growth.
    Furthermore, the model was fitted to the experimental data of the film growth rate dis-tribution along the direction of the reaction residence time in the horizontal tube reactor under different [H2]/[MTS] feed concentration ratios. It was found that the consecutive reactions of MTS and hydrogen in the gas phase exhibit a reaction order of 0.5 with respect to the hydrogen concentration, suggesting that at least two gaseous intermediate species are formed during the reaction, corresponding to surface attachment probabilities of 4.6 × 10-4 and 5.1 × 10-2, respectively, both contributing to the growth of silicon carbide films. Quantum chemical simulations of the gas-phase decomposition reactions of the precursors indicated that MTS likely undergoes gas-phase dissociation to form π-bonded 1,1-dichlorosilane molecules (corresponding to the smaller sticking probability) and subsequently undergoes free radical chain reactions with hydrogen, leading to chlorine detachment and the formation of free radical species (corresponding to the larger sticking probability). These gaseous intermediates maintain a constant 1:1 carbon-to-silicon atomic ratio, which is likely the main reason for the deposition of silicon carbide films with the desired stoichiometric composition.

    摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 第二章 文獻回顧 4 2.1 碳化矽結構及塊材製備方法 4 2.1.1 碳化矽的結構及特性 4 2.1.2 昇華法 (sublimation method)製備碳化矽 8 2.1.3 高溫化學氣相沉積法製備單晶碳化矽 9 2.2 化學氣相沉積法製備碳化矽 10 2.2.1 使用含氯矽烷的化學氣相沉積 12 2.2.2 以氯矽烷 (SiHxCly)做為前驅物的 SiC-CVD 12 2.2.3 以含碳的氯矽烷 (SiHxCyClz)為前驅物的 SiC-CVD 13 2.3 三氯矽甲烷化學氣相沉積系統之反應動力學 13 2.3.1 氫氣在 MTS化學氣相沉積系統 (CVD)中的重要性 18 2.3.2 本實驗室先前之實驗數據 20 2.3.3 以 Macrocavity反應器分析前驅物的氣相及表面反應速率常數 23 第三章 實驗方法與步驟 28 3.1 實驗材料 28 3.2 實驗設備 30 3.2.1 熱壁式管狀熱壁式管狀CVD反應器反應器 30 3.3 實驗步驟 34 3.3.1 矽基材的清洗矽基材的清洗 34 3.3.2 Macrocavity反應器製作用來作為反應器製作用來作為MTS-CVD長膜動力學分析長膜動力學分析 36 3.3.3 不同氫氣比例及不同壓力的碳化矽成長不同氫氣比例及不同壓力的碳化矽成長 36 3.4 分析儀器 38 3.4.1 多角度全光譜橢圓偏振技術多角度全光譜橢圓偏振技術(Variable Angle Spectroscopic Ellipsometry, VASE) 38 3.4.2 場發射掃描式電子顯微術場發射掃描式電子顯微術(Field Emission Scanning Electron Microscope, FESEM) 39 3.4.3 X射線光電子能譜學射線光電子能譜學(X-ray Photoelectron Spectroscopy, XPS) 41 第四章 結果與討論 42 4.1 以Macrocavity反應器進行MTS-CVD沉積的動力模型分析及探討 42 4.2 MTS於氣象反應僅裂解成單一中間產物之動力模型探討 48 4.3 MTS於氣象反應僅裂解成兩種中間產物之串聯反應動力模型探討 52 4.4 MTS-CVD反應動力學分析 62 第五章 結論 66 第六章 參考文獻 67

    (1) Kimoto, T. Material science and device physics in SiC technology for high-voltage power devices. Japanese Journal of Applied Physics 2015, 54 (4), 040103.
    (2) Mousavipour, S. H.; Saheb, V.; Ramezani, S. Kinetics and mechanism of pyrolysis of methyltrichlorosilane. The Journal of Physical Chemistry A 2004, 108 (11), 1946-1952.
    (3) Allendorf, M. D.; Osterheld, T. H.; Melius, C. F. The decomposition of methyltrichlorosilane: Studies in a high-temperature flow reactor. MRS Online Proceedings Library (OPL) 1993, 334.
    (4) Hong, L.-S.; Shimogaki, Y.; Komjyama, H. Macro/microcavity method and its application in modeling chemical vapor deposition reaction systems. Thin Solid Films 2000, 365 (2), 176-188.
    (5) Harris, G. Properties of silicon carbide, INSPEC. The Institution of Electrical Engineers, London 1995, 5.
    (6) Davis, R. F.; Kelner, G.; Shur, M.; Palmour, J. W.; Edmond, J. A. Thin film deposition and microelectronic and optoelectronic device fabrication and characterization in monocrystalline alpha and beta silicon carbide. Proceedings of the IEEE 1991, 79 (5), 677-701.
    (7) Ivanov, P.; Chelnokov, V. Recent developments in SiC single-crystal electronics. Semiconductor science and technology 1992, 7 (7), 863.
    (8) Morkoc, b. H.; Strite, S.; Gao, G.; Lin, M.; Sverdlov, B.; Burns, M. Large‐band‐gap SiC, III‐V nitride, and II‐VI ZnSe‐based semiconductor device technologies. Journal of Applied physics 1994, 76 (3), 1363-1398.
    (9) Knippenberg, W. F. Growth phenomena in silicon carbide. Philips Research Report 1963, 18, 161-274.
    (10) Yoo, W. S. Y. W. S.; Matsunami, H. M. H. Solid-state phase transformation in cubic silicon carbide. Japanese journal of applied physics 1991, 30 (3R), 545.
    (11) Itoh, A.; Akita, H.; Kimoto, T.; Matsunami, H. High‐quality 4H‐SiC homoepitaxial layers grown by step‐controlled epitaxy. Applied physics letters 1994, 65 (11), 1400-1402.
    (12) Levinshtein, M. E.; Rumyantsev, S. L.; Shur, M. S. Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe; John Wiley & Sons, 2001.
    (13) Wu, J.; Xu, Z.; Liu, L.; Hartmaier, A.; Rommel, M.; Nordlund, K.; Wang, T.; Janisch, R.; Zhao, J. MD simulation study on defect evolution and doping efficiency of p-type doping of 3C-SiC by Al ion implantation with subsequent annealing. Journal of Materials Chemistry C 2021, 9 (7), 2258-2275.
    (14) Kimoto, T.; Cooper, J. A. Fundamentals of silicon carbide technology: growth, characterization, devices and applications; John Wiley & Sons, 2014.
    (15) Kyuregyan, A.; Yurkov, S. Room-temperature avalanche breakdown voltages of p-n# 3 junctions made of Si, Ge, SiC, GaAs, GaP, and InP. Soviet Physics--Semiconductors(English Translation) 1989, 23 (10), 1126-1131.
    (16) Hong, M. H.; Samant, A.; Pirouz, P. Stacking fault energy of 6H-SiC and 4H-SiC single crystals. Philosophical Magazine A 2000, 80 (4), 919-935.
    (17) Jayakumari, S.; Tangstad, M. Transformation of β-SiC from Charcoal, Coal, and Petroleum Coke to α-SiC at Higher Temperatures. Metallurgical and Materials Transactions B 2020, 51 (6), 2673-2688.
    (18) Ellison, A.; Magnusson, B.; Sundqvist, B.; Pozina, G.; Bergman, P.; Janzén, E.; Vehanen, A. SiC crystal growth by HTCVD. In Materials Science Forum, 2004; Trans Tech Publ: Vol. 457, pp 9-14.
    (19) Cooper, J. A.; Agarwal, A. SiC power-switching devices-the second electronics revolution? Proceedings of the IEEE 2002, 90 (6), 956-968.
    (20) Pedersen, H.; Leone, S.; Kordina, O.; Henry, A.; Nishizawa, S.-i.; Koshka, Y.; Janzén, E. Chloride-based CVD growth of silicon carbide for electronic applications. Chemical reviews 2012, 112 (4), 2434-2453.
    (21) Aylward, G. H.; Findlay, T. J. Datensammlung Chemie in SI-Einheiten; John Wiley & Sons, 2014.
    (22) La Via, F.; Izzo, G.; Mauceri, M.; Pistone, G.; Condorelli, G.; Perdicaro, L.; Abbondanza, G.; Calcagno, L.; Foti, G.; Crippa, D. 4H-SiC epitaxial layer growth by trichlorosilane (TCS). Journal of Crystal Growth 2008, 311 (1), 107-113.
    (23) Cagliostro, D. E.; Riccitiello, S. R. Model for the formation of silicon carbide from the pyrolysis of dichlorodimethylsilane in hydrogen: II, silicon carbide formation from silicon and methane. Journal of the American Ceramic Society 1993, 76 (1), 49-53.
    (24) Regiani, I.; de Souza, M. F. Silicon carbide coating of mullite substrates by the CVD technique. Surface and Coatings Technology 2003, 162 (2-3), 131-134.
    (25) Pedersen, H.; Leone, S.; Henry, A.; Beyer, F.; Darakchieva, V.; Janzén, E. Very high growth rate of 4H-SiC epilayers using the chlorinated precursor methyltrichlorosilane (MTS). Journal of crystal growth 2007, 307 (2), 334-340.
    (26) Kunstmann, T.; Vepřek, S. Heteroepitaxy of β‐SiC from methyltrichlorosilane and methyltribromosilane on Si (100) without a carbon buffer layer. Applied physics letters
    1995, 67 (21), 3126-3128.
    (27) Fukushima, Y.; Hotozuka, K.; Shimogaki, Y. Multiscale analysis of silicon carbide-chemical vapor deposition process. Journal of Nanoscience and Nanotechnology 2011, 11 (9), 7988-7993.
    (28) Funato, Y.; Sato, N.; Fukushima, Y.; Sugiura, H.; Momose, T.; Shimogaki, Y. Fundamental evaluation of gas-phase elementary reaction models for silicon carbide chemical vapor deposition. ECS Journal of Solid State Science and Technology 2017, 6 (7), P399.
    (29) Sato, N.; Funato, Y.; Fukushima, Y.; Momose, T.; Koshi, M.; Shimogaki, Y. Modeling of the elementary gas‐phase reaction during chemical vapor deposition of silicon carbide from CH3SiCl3 /H2. International Journal of Chemical Kinetics 2020, 52 (6), 359-367. DOI: 10.1002/kin.21355.
    (30) Ge, Y.; Gordon, M. S.; Battaglia, F.; Fox, R. O. Theoretical study of the pyrolysis of methyltrichlorosilane in the gas phase. 3. Reaction rate constant calculations. The Journal of Physical Chemistry A 2010, 114 (6), 2384-2392.
    (31) Ganz, M.; Dorval, N.; Lefebvre, M.; Péalat, M.; Loumagne, F.; Langlais, F. In situ optical analysis of the gas phase during the deposition of silicon carbide from methyltrichlorosilane. Journal of the Electrochemical Society 1996, 143 (5), 1654.
    (32) Shima, K.; Funato, Y.; Sato, N.; Fukushima, Y.; Momose, T.; Shimogaki, Y. Porous Membranes as Sacrificial Layers Enabling Conformal Chemical Vapor Deposition Involving Multiple Film-Forming Species. ACS Applied Materials & Interfaces 2020, 12 (45), 51016-51025.
    (33) Oh, J.-H.; Oh, B.-J.; Choi, D.-J.; Kim, G.-H.; Song, H.-S. The effect of input gas ratio on the growth behavior of chemical vapor deposited SiC films. Journal of materials science 2001, 36 (7), 1695-1700.
    (34) Motojima, S.; Hasegawa, M. Chemical vapor deposition of SiC layers from a gas mixture of CH3SiCl3+ H2 (+ Ar), and effects of the linear velocity and Ar addition. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 1990, 8 (5), 3763-3768.
    (35) Wang, L.; Chen, Z.; Wang, B.; Li, Y.; Zhang, R.; Liu, G.; He, Z.; Fu, D.; Wang, H.; Xiong, X. Effect of free carbon on micro-mechanical properties of a chemically vapor deposited SiC coating. Ceramics International 2018, 44 (14), 17118-17123.
    (36) Peng, J.; Jolly, B.; Mitchell, D. J.; Haynes, J. A.; Shin, D. Computational thermodynamic study of SiC chemical vapor deposition from MTS‐H
    2*. Journal of the American Ceramic Society 2021, 104 (7), 3726-3737. DOI: 10.1111/jace.17742.
    (37) 李柏陞李柏陞. 以以MTS-CVD高產率製備高產率製備 ββ-SiC薄膜之動力學探討薄膜之動力學探討. 台灣科技大台灣科技大學化學工程研究所碩士班碩士論文學化學工程研究所碩士班碩士論文, 2021.
    (38) 周冠宏周冠宏. 以甲基三氯矽烷為前驅物化學氣相沉積β相碳化矽薄膜的成長機以甲基三氯矽烷為前驅物化學氣相沉積β相碳化矽薄膜的成長機構之研究構之研究. 國立臺灣科技大學國立臺灣科技大學, 台北市台北市, 2022. https://hdl.handle.net/11296/kkfwt7.
    (39) Janai, M. Chemical vapour deposition of silicon films in capillary layers. Thin Solid Films 1982, 91 (3), 211-216.
    (40) Hong, L. S.; Shimogaki, Y.; Egashira, Y.; Komiyama, H. Study of the Reaction of Si2 H 6 in the Presence of C 2 H 2 in Synthesis of SiC Films by LPCVD Using a Macro/microcavity Method. Journal of The Electrochemical Society 1992, 139 (12), 3652.
    (41) Johnson, M. Physical Properties of Chemicals in PAC Revision 27 Listing; Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States), 2013.
    (42) Akhtar, K.; Khan, S. A.; Khan, S. B.; Asiri, A. M. Scanning electron microscopy: principle and applications in nanomaterials characterization. In Handbook of materials characterization, Springer, 2018; pp 113-145.
    (43) Fukushima, Y.; Sato, N.; Funato, Y.; Sugiura, H.; Hotozuka, K.; Momose, T.; Shimogaki, Y. Multi-Scale Analysis and Elementary Reaction Simulation of SiC-CVD Using CH3SiCl3/H2. ECS Journal of Solid State Science and Technology 2013, 2 (11), P492-P497. DOI: 10.1149/2.039311jss.
    (44) Shima, K.; Otaka, Y.; Sato, N.; Funato, Y.; Fukushima, Y.; Momose, T.; Shimogaki, Y. Conformal and Stoichiometric Chemical Vapor Deposition of Silicon Carbide onto Ultradeep Heterogeneous Micropores by Controlling the Initial Nucleation Stage. ACS Applied Materials & Interfaces 2021, 13 (44), 53009-53020.
    (45) Sato, N.; Funato, Y.; Fukushima, Y.; Momose, T.; Koshi, M.; Shimogaki, Y. Modeling of the elementary gas‐phase reaction during chemical vapor deposition of silicon carbide from CH3SiCl3/H2. International Journal of Chemical Kinetics 2020, 52 (6), 359-367.
    (46) Ge, Y.; Gordon, M. S.; Battaglia, F.; Fox, R. O. Theoretical study of the pyrolysis of methyltrichlorosilane in the gas phase. 2. Reaction paths and transition states. The Journal of Physical Chemistry A 2007, 111 (8), 1475-1486.

    無法下載圖示 全文公開日期 2025/08/29 (校內網路)
    全文公開日期 2025/08/29 (校外網路)
    全文公開日期 2025/08/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE