簡易檢索 / 詳目顯示

研究生: 阮佑宸
You-Chen Ruan
論文名稱: 利用菲涅耳透鏡技術實現應用於 Ku-band 衛星通訊之平頂波束天線罩設計
Design of Flat-Top Beam Radomes for Ku-Band Satellite Communication using Fresnel Lens Technology
指導教授: 謝松年
Sung-Nien Hsieh
口試委員: 林丁丙
Ding-Bing Lin
王蒼容
Chun-Long Wang
曾昭雄
Chao-Hsiung Tseng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 68
中文關鍵詞: 波束整形天線罩菲涅耳天線罩廣義折射定律
外文關鍵詞: Beam shaping, Radome, Fresnel radome, Generalized law of refraction
相關次數: 點閱:187下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文使用陣列天線為基礎,透過附掛介質天線罩的方式,致力於實現具有 擴散且平頂效果的天線罩設計。主要目標是觀察在 Ku-band 頻段下不同頻率點的 場型變化,其中包括下行(downlink)在 10.7GHz、11.7GHz 和 12.7GHz,以及 上行(uplink)在 14GHz、14.3GHz 和 14.5GHz。
本研究通過利用廣義折射定律的原理以及平面波的特性,設計了一種特殊的 天線罩,即菲涅耳天線罩。這種天線罩的設計旨在改變電磁波的傳播和輻射特 性,從而實現對波束的精確控制和整形。透過這種設計方法,可以期望提高天線 的半功率波束寬(Half Power Beamwidth, HPBW),從而改善通訊系統的訊號傳 輸範圍。在這項研究中,分別為下行和上行設計了專屬的天線罩,以確保在特定 頻段的工作中,天線罩能夠有效地控制波束。


This thesis is based on the array antenna, through the method of adding a dielectric radome, it is dedicated to the design of the radome with spreading and flat top effect. The main objective is to observe the field pattern variations at different frequency points in the Ku-band, including the transmit frequencies of 10.7 GHz, 11.7 GHz, and 12.7 GHz, as well as the receive frequencies of 14 GHz, 14.3 GHz, and 14.5 GHz.
This study employs the principles of Generalized law of refraction and the characteristics of plane waves to design a specialized antenna enclosure known as a Fresnel radome. The design of this radome aims to alter the propagation and radiation characteristics of electromagnetic waves, thereby achieving precise control and shaping of the beam. Through this design approach, an improved half-power beamwidth (HPBW) of the antenna is expected, leading to enhanced signal transmission range in communication systems. Dedicated radomes are designed for both the transmitting and receiving ends in order to ensure effective beam control in specific frequency bands.

摘要................................................................................I Abstract...........................................................................II 誌謝...............................................................................IV 目錄................................................................................V 圖目錄............................................................................VII 表目錄............................................................................ IX 第一章 緒論.........................................................................1 1.1 研究背景與動機...............................................................1 1.2 文獻探討................................................................... 3 1.3 論文架構................................................................... 7 第二章 天線罩架構與介質板傳輸.........................................................8 2.1 何謂天線罩................................................................. 8 2.2 菲涅耳透鏡................................................................. 9 2.3 廣義折射定律............................................................... 10 2.4 TE、TM 模式下平面波在介質層中的傳播特性 ..................................... 17 第三章 天線罩系統架構...............................................................21 3.1 天線罩系統之饋入天線....................................................... 21 3.1.1 貼片天線陣列..........................................................21 3.1.2 下行之陣列天線的模擬、量測.............................................26 3.1.3 上行之陣列天線的模擬、量測.............................................30 3.2 天線罩設計.................................................................34 3.2.1 下行之天線罩設計......................................................34 3.2.2 上行之天線罩設計......................................................37 3.3模擬天線罩系統...............................................................38 第四章 模擬、量測與結果分析..........................................................42 4.1 量測環境介紹.................................................................. 42 4.2 陣列天線與附掛天線罩的模擬與量測結果分析..................................... 44 4.2.1 下行之陣列天線附掛天線罩...............................................44 4.2.2 上行之陣列天線附掛天線罩...............................................49 第五章 結論........................................................................54 參考文獻...........................................................................55

[1] H. D. Hristov, "The multi-dielectric fresnel zone-plate antenna-a new candidate for DBS reception," in IEEE Antennas and Propagation Society International Symposium. 1996 Digest, 21-26 July 1996 1996, vol. 1, pp. 746-748 vol.1, doi: 10.1109/APS.1996.549703. [2] A. Jouadé, J. Bor, O. Lafond, and M. Himdi, "Millimeter-wave fresnel zone plate lens based on foam gradient index technological process," in 2016 10th European Conference on Antennas and Propagation (EuCAP), 10-15 April 2016 2016, pp. 1-4, doi: 10.1109/EuCAP.2016.7481776. [3] H. D. Hristov and M. H. A. J. Herben, "Millimeter-wave Fresnel-zone plate lens and antenna," IEEE Transactions on Microwave Theory and Techniques, vol. 43, no. 12, pp. 2779-2785, 1995, doi: 10.1109/22.475635. [4] X. Wang, M. Jenning, and D. Plettemeier, "60 GHz planar fresnel zone lens," in 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 19-24 July 2015 2015, pp. 2065- 2066, doi: 10.1109/APS.2015.7305422. [5] S. Zhang, W. Whittow, and Y. Vardaxoglou, "3D-printed Fresnel zone plate lens," in 2016 International Symposium on Antennas and Propagation (ISAP), 24-28 Oct. 2016 2016, pp. 88-89. [6] D. R. Reid and G. S. Smith, "A Full Electromagnetic Analysis of GroovedDielectric Fresnel Zone Plate Antennas for Microwave and Millimeter-Wave Applications," IEEE Transactions on Antennas and Propagation, vol. 55, no. 8, pp. 2138-2146, 2007, doi: 10.1109/TAP.2007.901848. [7] D. R. Reid and G. S. Smith, "Design of phase-correcting zone plate antennas for microwave and millimeter-wave applications using a full electromagnetic analysis," in 2007 IEEE Antennas and Propagation Society International Symposium, 9-15 June 2007 2007, pp. 1505-1508, doi: 10.1109/APS.2007.4395792. [8] A. Petosa, N. Gagnon, and A. Ittipiboon, "Effects of Fresnel lens thickness on aperture efficiency," in 2004 10th International Symposium on Antenna Technology and Applied Electromagnetics and URSI Conference, 20-23 July 2004 2004, pp. 1-4, doi: 10.1109/ANTEM.2004.7860666. [9] P. Zhang, S. Gong, and R. Mittra, "Beam-Shaping Technique Based on Generalized Laws of Refraction and Reflection," IEEE Transactions on Antennas and Propagation, vol. 66, no. 2, pp. 771-779, 2018, doi: 56 10.1109/TAP.2017.2778042. [10] N. Yu et al., "Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction," Science, vol. 334, no. 6054, pp. 333-337, 2011/10/21 2011, doi: 10.1126/science.1210713. [11] Z. Wang, J. Chen, and M. Xue, "Terahertz lenses based on nonuniform metasurfaces," Optics Communications, vol. 338, pp. 585-589, 2015/03/01/ 2015, doi: https://doi.org/10.1016/j.optcom.2014.11.044. [12] Z.-b. Wang, J. Shi, and J.-c. Chen, "High-efficiency electromagnetic wave controlling with all-dielectric Huygens’ metasurfaces," International Journal of Antennas and Propagation, vol. 2015, 2015. [13] M. Moeini‐Fard and M. Khalaj‐Amirhosseini, "Nonuniform reflect‐array antennas," International Journal of RF and Microwave Computer‐Aided Engineering, vol. 22, no. 5, pp. 575-580, 2012. [14] C. A. Balanis, Antenna Theory: Analysis and Design. Wiley, 2016. [15] 蘇峻睿(2023)。具平頂波束之超表面天線罩設計—應用於 Ku-band 衛星通 訊。碩士論文。國立臺灣科技大學。

QR CODE