簡易檢索 / 詳目顯示

研究生: 葉沂桀
Yi-Jie Ye
論文名稱: 以高頻數值方法輔助設計具寬頻回波抑制頻帶之多層頻率選擇表面雷達罩設計
High-Frequency-Method Assisted Multi-Layer FSS Radome Designs with Extended RCS Suppression Bands
指導教授: 廖文照
Wen-Jiao Liao
口試委員: 陳士元
Shih-Yuan Chen
陳晏笙
Yen-Sheng Chen
侯元昌
Yuan-Chang Hou
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 84
中文關鍵詞: 高頻數值方法頻率選擇表面雷達反射截面積雷達罩
外文關鍵詞: High frequency numerical method, frequency selective surface (FSS), radar cross section (RCS), radomes
相關次數: 點閱:218下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出了一個具備寬頻雷達反射截面積抑制頻帶的雷達罩設計,該雷達罩係以不同共振頻率之帶拒單元所形成的多層頻率選擇表面來實現。有別於傳統頻率選擇表面所形成的雷達罩大多以帶通單元構成,本論文所提出的設計則是透過調整多層板的間距製造期望的帶通頻帶。多層板結構的電磁響應通常難以評估,原因是多層板間的多次反射與透射。本研究為了解決這個問題,因此開發了對應的高頻數值方法,即可有效率地進行評估與分析。此方法是先透過全波模擬獲得單層板的穿透與反射頻率響應,建立完整的資料庫,再利用射線追蹤技術,將單層板響應合成出多層板的反射與透射頻譜。在此方法的輔助下,不僅能快速地進行優化設計,也能透過參數分析得知如何調整多層板結構的散射特性。本論文進行了數個不同多層板配置的反射率與透射率量測,其量測結果也與高頻數值方法之合成結果趨勢一致,因此驗證本論文所提出的高頻數值方法可應用於具共振週期性結構的雷達罩設計。


    In this thesis, multi-layer FSS designs comprising band stop type elements of different frequencies are developed to serve as a radome to provide an extended RCS suppression band. Unlike conventional FSS-based radomes that are made of bandpass elements, the proposed design yields transmission bands by adjusting the spacing between cross layers. Note, the spectral response of this multi-layer structure is difficult to assess due to interlaced FSS elements and multiple bounces between layers. A high frequency method is therefore developed to provide time-effective estimations. This technique is based on modeling intrinsic properties of a single-layer homogeneous FSS design as spectral functions using the full wavelength method. Reflection and transmission spectra of stacked structures are synthesized using single-layer responses via the ray tracing technique. The method not only delivers an effective design optimization mean, but also provides physical insight about how the favorable scattering features are achieved. Comparisons of high frequency estimations and prototype measurement results exhibit satisfactory agreement. Design optimization can be facilitated to achieve different performance objectives with the proposed design method.

    摘要 1 Abstract 3 目錄 5 圖目錄 7 第一章 緒論 10 1.1. 研究背景與動機 10 1.2 論文組織 15 第二章 具寬頻雷達反射截面積抑制頻帶之多層頻率選擇表面雷達罩 16 2.1 多層頻率選擇表面之雷達罩配置設計 16 2.1.1 所提出架構之反射與透射率頻譜特色 16 2.1.2 頻率選擇表面之基本單元與多層板架構 17 2.2 全波電磁模擬軟體之模擬結果 20 2.3 加權反射係數總和法 23 2.3.1 程式碼撰寫 23 2.3.2 合成結果與分析 26 2.3.3 設計參數分析及優化 35 2.3.4 整合介質平板設計 38 2.4 小結 54 第三章 效能驗證 55 3.1 前言 55 3.2 量測系統架設 58 3.2.1 單站雷達反射截面積量測系統架設 58 3.2.2 透射率量測系統架設 62 3.3 量測結果 66 3.3.1 Case 1 配置 66 3.3.2 Case 4 配置 69 3.3.3 Case 5 配置 69 3.3.4 量測結果分析與效能比較 73 3.4 小結 75 第四章 結論 76 參考文獻 77

    [1] J. Ren, S. Gong, and W. Jiang, “Low-RCS monopolar patch antenna based on a dual-ring metamaterial absorber,” IEEE Antenna Wireless Propag. Lett., vol. 17, no. 1, pp. 102-105. Jan. 2018.
    [2] B. A. Munk, Frequency Selective Surfaces: Theory and Design. New York, NY, USA: Wiley-Interscience, 2000.
    [3] K. Payne, K. Xu, and J. H. Choi, “Generalized synthesized technique for the design of thickness customizable high-order bandpass frequency-selective surface,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 11, pp. 4783-4793, Nov. 2018.
    [4] J. H. Choi, J. S. Sun, and T. Itoh, “An alternative technique in designing a low-profile two-pole bandpass Frequency selective surface (FSS) using aperture coupling interlayer,” 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), 2013, pp. 1-3.
    [5] S. M. A. Momeni Hasan Abadi, and N. Behdad, “Inductively-coupled miniaturized-element frequency selective surfaces with narrowband, high-order bandpass responses,” IEEE Trans. Antennas Propag., vol. 63, no. 11, pp. 4766-4774, Nov. 2015.
    [6] K. Payne, E. F. Peters, J. Brunett, D. K. Wedding, C. A. Wedding, and J. H. Choi, “Second-order plasma enabled tunable low-profile frequency selective surface based on coupling inter-layer,” 2016 46th European Microwave Conference (EuMC), 2016, pp. 309-312.
    [7] Y.-C. Hou, W.-J. Liao, C.-C. Tsai, and S.-H. Chen, “Planar multilayer structure for broadband broad-angle RCS reduction,” IEEE Trans. Antennas Propag., vol. 64, no. 5, pp. 1859–1867, May 2016.
    [8] M. Paquay, J. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, “Thin AMC structure for radar cross-section reduction,” IEEE Trans. Antennas Propag., vol. 55, no. 12, pp. 3630-3638, Dec. 2007.
    [9] J. C. Iriarte Galarregui, A. Tellechea Pereda, J. L. M. de Falcón, I. Ederra, R. Gonzalo, and P. de Maagt, “Broadband radar cross-section reduction using AMC technology,” IEEE Trans. Antennas Propag., vol. 61, no. 12, pp. 6136-6143, Dec. 2013.
    [10] A. Edalati and K. Sarabandi, “Wideband, wide angle, polarization independent RCS reduction using nonabsorptive miniaturized-element frequency selective surfaces,” IEEE Trans. Antennas Propag., vol. 62, no. 2, pp. 747-754, Feb. 2014.
    [11] J. Xue, W. Jiang, and S. Gong, “Chessboard AMC surface based on quasi-fractal structure for wideband RCS reduction,” IEEE Antenna Wireless Propag. Lett., vol. 17, no. 2, pp. 201-204, Feb. 2018.
    [12] W.-J. Liao, Y.-C. Hou, and S.-T. Chen, “Dielectric-loaded ultra-wideband RCS reduction structures,” IEEE Trans. Antennas Propag., vol. 68, no. 3, pp. 2277-2289, Mar. 2020.
    [13] W.-J. Liao, C.-W. Chiu, Y.-F. Chen, and Y.-C. Hou, “A dielectric panel design for RCS reduction and EM shielding,” IEEE Antenna Wireless Propag. Lett., vol. 19, no. 12, pp. 2221-2225, Dec. 2020.
    [14] M. A. Al-Joumayly and N. Behdad, “A generalized method for synthesizing low-profile, band-pass frequency selective surfaces with non-resonant constituting elements,” IEEE Trans. Antennas Propag., vol. 58, no. 12, pp. 4033-4041, Dec. 2010.
    [15] Q. Chen, D. Sang, M. Guo, and Y. Fu, “Frequency-selective rasorber with interabsorption band transparent window and interdigital resonator,” IEEE Trans. Antennas Propag., vol. 66, no. 8, pp. 4105-4114, Aug. 2018.
    [16] L. Han, G. Cheng, G. Han, R. Ma, and W. Zhang, “Electronically beam-steering antenna with active frequency-selective surface,” IEEE Antennas Wireless Propag. Lett., vol. 18, no. 1, pp. 108-112, Jan. 2019.
    [17] B. Sanz-Izquierdo, E. A. Parker, and J. C. Batchelor, “Switchable frequency selective slot arrays,” IEEE Trans. Antennas Propag., vol. 59, no. 7, pp. 2728-2731, Jul. 2011.
    [18] S. C. Bakshi, D. Mitra, and S. Ghosh, “A frequency selective surface based reconfigurable rasorber with switchable transmission/reflection band,” IEEE Antennas Wireless Propag. Lett., vol. 18, no. 1, pp. 29-33, Jan. 2019.
    [19] S. Sun, W. Jiang, S. Gong, and T. Hong, “Reconfigurable linear-to-linear polarization conversion metasurface based on PIN diodes,” IEEE Antennas Wireless Propag. Lett., vol. 17, no. 9, pp. 1722-1726, Sep. 2018.
    [20] K. Sarabandi and N. Behdad, “A frequency selective surface with miniaturized elements,” IEEE Trans. Antennas Propag., vol. 55, no. 5, pp. 1239-1245, May 2007.
    [21] F. Costa and A. Monorchio, “A frequency selective radome with wideband absorbing properties,” IEEE Trans. Antennas Propag., vol. 60, no. 6, pp. 2740-2747, June 2012.
    [22] M. Al-Joumayly and N. Behdad, “A new technique for design of low-profile, second-order, bandpass frequency selective surfaces,” IEEE Trans. Antennas Propag., vol. 57, no. 2, pp. 452-459, Feb. 2009
    [23] Y. E. Erdemli, K. Sertel, R. A. Gilbert, D. E. Wright, and J. L. Volakis, “Frequency-selective surfaces to enhance performance of broad-band reconfigurable arrays,” IEEE Trans. Antennas Propag., vol. 50, no. 12, pp. 1716-1724, Dec. 2002.
    [24] N. Behdad, M. Al-Joumayly, and M. Salehi, “A low-profile third-order bandpass frequency selective surface,” IEEE Trans. Antennas Propag., vol. 57, no. 2, pp. 460-466, Feb. 2009.
    [25] S. M. A. Momeni Hasan Abadi, M. Li, and N. Behdad, “Harmonic-suppressed miniaturized-element frequency selective surfaces with higher order bandpass responses,” IEEE Trans. Antennas Propag., vol. 62, no. 5, pp. 2562-2571, May 2014.
    [26] Y.-C. Hou, W.-J. Liao, J.-F. Ke, and Z.-C. Zhang, “Broadband and broad-angle dielectric-loaded RCS reduction structures,” IEEE Trans. Antennas Propag., vol. 67, no. 5, pp. 3334-3346, May 2019.
    [27] W.-J. Liao, W.-Y. Zhang, Y.-C. Hou, S.-T. Chen, C. Y. Kuo, and M. Chou, “An FSS-integrated low RCS radome design,” IEEE Antenna Wireless Propag. Lett., vol. 18, no. 10, pp. 2076-2080, Oct. 2019.
    [28] C. Huang, C. Ji, X. Wu, J. Song, and X. Luo, “Combining FSS and EBG surfaces for high-efficiency transmission and low-scattering properties,” IEEE Trans. Antennas Propag., vol. 66, no. 3, pp. 1628-1632, Mar. 2018.
    [29] Q. Guo, Z. Li, J. Su, L. Y. Yang, and J. Song, “Dual-polarization absorptive/transmissive frequency selective surface based on tripole elements,” IEEE Antenna Wireless Propag. Lett., vol. 18, no. 5, pp. 961-965, May 2019.
    [30] S. C. Bakshi, D. Mitra, and F. L. Teixeira, “Wide-angle broadband rasorber for switchable and conformal application,” IEEE Trans. Microw. Theory Techn., vol. 69, no. 2, pp. 1205-1216, Feb. 2021.
    [31] Q. Guo, Z. Li, J. Su, L. Y. Yang, and J. Song, “Dual-polarization absorptive/transmissive frequency selective surface based on tripole elements,” IEEE Antenna Wireless Propag. Lett., vol. 18, no. 5, pp. 961- 965, May 2019.
    [32] 陳昱夆, 具互補式反射與透射特性之可重置頻率選擇表面設計, 國立臺灣科技大學, 碩士論文, 民國110年

    QR CODE