簡易檢索 / 詳目顯示

研究生: 蔡晉哲
Chin-Che Tsai
論文名稱: 波束可重置天線陣列設計與雷達反射截面積增強結構開發
Design of Beam Reconfigurable Array Antennas and Development of Radar Cross Section Enhancing Structures
指導教授: 廖文照
Wen-Jiao Liao
口試委員: 馬自莊
Tzyh-Ghuang Ma
楊成發
Chang-Fa Yang
周錫增
Hsi-Tseng Chou
廖昌倫
Chang-Lun Liao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 79
中文關鍵詞: 波束可重置天線天線陣列基地台天線雷達反射截面積無人機毫米波
外文關鍵詞: Beam reconfigurable antenna, antenna array, base station antenna, radar cross section, UAV, millimeter wave
相關次數: 點閱:210下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文第一部分提出一款電控式波束可重置的雙頻槽孔天線陣列,可應用於LTE無線通訊的小細胞基地台。所提出之天線整體大小為350 (L) × 265 (W) × 40 (H) mm3,可達到LTE 1710~1880 MHz及2500~2690 MHz頻段之涵蓋。利用電控式相位延遲電路,使天線陣列提供三種主波束偏轉角度,搭配演算法能根據使用情境調整波束偏轉角度,提升網路涵蓋效能。經實作實測,驗證所提出之天線具高指向性及波束偏轉效能。
    第二部分提出一種可在遠場無反射實驗室內進行的單站雷達反射截面積量測方法,配合向量網路分析儀及相應的訊號處理方式,可計算出目標物之RCS值,經與模擬結果比較驗證了該量測方法的準確性。並應用此方法量測了一款RCS抑制結構及一款商用小型無人機,並探討其RCS特性。
    第三部分提出一種在毫米波頻段增強RCS的結構設計方法,並根據此方法設計星狀、環形、網狀等三款寬角度RCS增強結構,並以統計分析評估各結構之RCS增強表現,結果顯示網狀結構具有最穩定之RCS增強效果。吾人實作一組五環形面的RCS增強結構,其近場量測結果與遠場模擬結果有相同的RCS增強趨勢,顯示此結構於實際應用上可提供寬角度RCS增強效果。


    In the first part of this thesis, a beam reconfigurable array antenna is proposed for LTE base station. The physical size of the proposed array is 350 (L) × 265 (W) × 40 (H) mm3. It provides a coverage on 1710 to 1880 MHz and 2500 to 2690 MHz for LTE band 3 and 7 . The proposed array provides three different main beam tilting angles. It allows the base station to switch the tilting angle based on the application scenario in order to maximize the network coverage. Measurement results show that the proposed antenna has a high directivity and the beam switching feature.
    The second part proposes a radar cross section measurement method which is implemented in a far-field anechoic chamber. A network analyzer is used to measure the frequency spectrum of the target. The RCS of the target is estimated and compared with simulated results. An RCS reduction structure and a commercially available UAV were measured. There RCS characteristics are analyzed.
    The third part of this thesis proposes a millimeter wave RCS enhancement method. Based on this method, three broad-angle RCS enhancement structures including star, ring, and mesh shaped structures were proposed. Statistics of these structures were examined and the results show that the mesh structure can provide the most stable performance over a broad angular region. A 5 ring structure was fabricated and measured in a near-field range. Measurement results, which are similar to far-field simulated ones, indicate that the structure can provide a broad-angle RCS enhancement performance.

    摘要 I Abstract II 誌謝 III 目錄 V 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 研究背景與動機 1 1.2 論文組織 2 第二章 應用於LTE行動通訊基地台之電控式波束可重置雙頻槽孔天線陣列設計 3 2.1 前言 3 2.2 單元天線結構與設計原理 5 2.2.1 單元天線結構之演進 6 2.2.2 單元天線之參數分析 8 2.3 雙極化槽孔天線陣列設計 10 2.4 電控式波束切換電路設計 15 2.5 波束可重置天線陣列效能驗證 17 2.6 小結 24 第三章 雷達反射截面積量測方法開發 25 3.1 前言 25 3.2 量測系統 27 3.2.1 系統架構 27 3.2.2 訊號處理方法 29 3.3 RCS抑制結構量測 31 3.4 小型無人航空載具量測 35 3.5 小結 40 第四章 毫米波頻段之雷達反射截面積增強結構設計 41 4.1 前言 41 4.2 毫米波RCS增強結構設計 43 4.2.1 毫米波寬角度RCS增強結構設計 48 4.2.2三維散射圖及統計分析 52 4.3 毫米波RCS量測方法 55 4.4 毫米波RCS增強結構量測 58 4.5 小結 60 第五章 結論 61 參考文獻 63

    [1] S.-W. Qu, J.-L. Li, and Q. Xue, “Bowtie dipole antenna with wide beam width for base station application,” IEEE Antennas Wireless Propag. Lett., vol. 6, pp. 293-295, 2007.
    [2] W.-X. An, H. Wong, K.-L. Lau, S.-F. Li, and Q. Xue, “Design of broadband dual-band dipole for base station antenna,” IEEE Trans. Antennas Propag., vol. 60, no. 3, pp. 1592-1595, Mar. 2012.
    [3] I. Govindanarayanan, N. Rangaswamy, “Asymmetric folded dipole antenna with high front-to-back ratio for LTE base stations,” IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 869-872, 2016.
    [4] J.-N. Lee, K.-C. Lee, G.-D. Jo, H.-K. Kwon, B.-S. Kang, J.-H. Oh, M.-D. Kim, and N.-H. Park, “Design of the dual-polarized dipole antenna for small base station, ” Antennas and Propagation (ISAP), 2012 International Symposium on, pp. 1059-1062, 2012.
    [5] Z. Bao, Z. Nie, and X. Zong, “A broadband dual-polarization antenna element for wireless communication base station,” in Proc. IEEE Asia-Pac. Conf. Antennas Propag. (APCAP), pp. 144-146, 2012.
    [6] X.-X. Guo, D.-L. Wen and Q.-X. Chu, “A dual-polarized base-station antenna for LTE communication system,” in Proc. 9th Eur. Conf. on Antennas and Propagation, pp. 1-4, 2015.
    [7] J. Säily, “Proximity-coupled and dual-polarized microstrip patch antenna for WCDMA base station arrays,” in Asia-Pacific Microwave Conference, pp. 2086-2089, 2006.
    [8] Q. Zhu, S. Yang, and Z. Chen, “Modified corner-fed dual-polarised stacked patch antenna for micro-base station applications,” Electron. Lett., vol. 51, pp. 604-606, 2015.
    [9] Y. Jin, and Z. Du, “Broadband dual-polarized F-probe fed stacked patch antenna for base stations,” IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 1121-1124, 2015.
    [10] A. Lambrecht, J. Pontes, O. Oestreich, W. Wiesbeck, “Application of dielectric resonator antennas as additional elements for base station equipment,” IEEE Antennas and Propagation Society International Symposium, pp. 549-552, Jun. 2007.
    [11] J.-B. Yan and J.-T. Bernhard, “Design of a MIMO dielectric resonator antenna for LTE femtocell base stations,” IEEE Trans. Antennas Propag., vol. 60, no. 2, pp. 438-444, Feb. 2012.
    [12] Y.-L. Tsai, R.-B. Hwang and Y.-D. Lin, “A reconfigurable beam-switching antenna base on active FSS,” in 15th International Symposium Antenna Technology Application Electromagnetics (ANTEM), pp. 1-4, 2012.
    [13] A. Edalati and T. A. Denidni, ‘‘Frequency selective surfaces for beam-switching applications,’’ IEEE Trans. Antennas Propag., vol. 61, no. 1, pp. 195-200, Jan. 2013.
    [14] M. Bouslama, M. Traii, T. A. Denidni, A. Gharsallah, “Beam-switching antenna with a new reconfigurable frequency selective surface,” IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 1159-1162, 2016.
    [15] S. Wang, K. Abe, H. Arai, N. Takemura, and T. Mitsui, “A low-profile switched beam antenna using parasitic elements for indoor base station,” in Proc. IEEE International Workshop on Electromagnetics, Applications and Student Innovation (iWEM), pp. 1-2, Aug. 2012.
    [16] V. T. Nguyen, C. W. Jung, “Radiation-pattern reconfigurable antenna for medical implants in medradio band,” IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 106-109, 2016.
    [17] M. Barba, J. E. Page, J. A. Encinar, and J. R. Montejo-Garai, “A switchable multiple beam antenna for GSM-UMTS base stations in planar technology,” IEEE Trans. Antennas Propag., vol. 54, no. 11, pp. 3087-3094, Nov. 2006.
    [18] M. M. Alam, “Microstrip antenna array with four port butler matrix for switched beam base station application,” in Proc. Int. Conf. Comput. Inf. Technol(ICCIT), pp. 531-534, Dec. 2009.
    [19] Y.-L. Tsai; J.-H. Chen, “Design of a dual-polarized beam-switching antenna for small base station application,” in Proc. IEEE International Workshop on Electromagnetics, Applications and Student Innovation (iWEM), pp. 1-2, Nov. 2015.
    [20] Rogers Corporation, RO4000 Series High Frequency Circuit Materials, datasheet, [online]. Available:
    http://www.rogerscorp.com/documents/726/acs/RO4000-LaminatesData-sheet.pdf
    [21] 黃柏凱, 應用於數位電視廣播接收裝置與行動通訊小型基地台之天線設計, 國立臺灣科技大學電機工程研究所, 碩士論文, 民國105年
    [22] Skyworks, SP3T Switch WKY13309-370LF, datasheet, [online]. Available: http://www.skyworksinc.com/uploads/documents/SKY13309_370LF_200721I.pdf
    [23] E. F. Knott, J. F. Shaeffer, M. T. Tuley, Radar Cross Section. Artech House, 2004.
    [24] Wikipedia, Radar cross-section, [online]. Available: https://en.wikipedia.org/wiki/
    Radar_cross-section.
    [25] C. G. Backman, “Some recent developments in RCS measurements techniques,” Proc. IEEE, vol. 53, no. 8, pp. 962-972, Aug. 1965.
    [26] L. Zhang, K. Ding, N. Li, and J. Ren, “High-resolution RCS measurement inside an anechoic chamber,” in Proc. IEEE International Forum on Information Technology and Applications(IFITA), pp. 252-255, Jul. 2010.
    [27] J. Garat, “Microwave techniques for radar cross section measurements:a review”, 8th Meditarranean , MELECON, 1996
    [28] IEEE, IEEE recommended practice for radar cross-section test procedures(Std 1502-2007), Standard, 2007.
    [29] L. Sevgi, Z. Rafiq, and I. Majid, “Radar cross section (RCS) measurements,” IEEE Antennas Propagation Magazine, vol. 55, no. 6, pp. 278-291, Dec. 2013.
    [30] Y.-C. Hou, W.-J. Liao, C.-C. Tsai, and S.-H. Chen, “Planar multilayer structure for broadband broad-angle RCS reduction,” IEEE Trans. Antennas Propag., vol. 60, no. 2, pp. 438-444, Feb. 2012.
    [31] Amazon, “Amazon prime air,” [online]. Available: http://www.amazon.com/b?node=8037720011
    [32] Q. Man, S. Ma, L. Xia, and Y. Wang, “Research on security monitoring and health management system of medium-range UAV,” in Reliability, Maintainability and Safety, 2009. ICRMS 2009. 8th International Conference on, pp. 854-857, 2009.
    [33] Texas Instruments, Advanced Driver Assistance (ADAS) Solutions Guide, [online]. Available: www.ti.com/lit/sl/slyy044a/slyy044a.pdf, 2015.
    [34] L. Peters, “Passive bistatic radar enhancement devices,” IEE Proceedings, vol. 109, Part C, No. 15, Jul. 1961.
    [35] K. Sarabandi and T. -C. Chiu, “Optimum corner reflectors for calibration of imaging radars,” IEEE Trans. Antennas Propag., vol. 44, no. 10, pp. 1348-1631, Oct. 1996.
    [36] T. Griesser and C. A. Balanis, “Backscatter analysis of dihedral corner reflectors using physical optics and physical theory of diffraction,” IEEE Trans. Antennas Propagat., vol. AP-35, no. 10, pp. 1137-1147, Oct. 1987.
    [37] D. Lipuma, S. Meric, and R. Gillard, “RCS enhancement of flattened dihedral corner reflector using reflectarray approach,” Electron. Lett., vol. 49, no. 2, pp. 152-153, Jan. 2013.
    [38] FEKO, “Overview of FEKO,” [online]. Available: https://www.feko.info/product-detail/overview-of-feko

    QR CODE