簡易檢索 / 詳目顯示

研究生: 梁維乾
Wei-chien Liang
論文名稱: 應用導光與繞射元件於雷射光束整型之研究
Application of lightpipe and diffractive elements for laser beam shaping
指導教授: 陳政寰
Cheng-huan Chen
李三良
San-liang Lee
口試委員: 鄭正元
Jeng-ywan Jeng
林晃嚴
Hoang-yan Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 88
中文關鍵詞: 光束整型整型器平頂式分佈導光管
外文關鍵詞: beam shaping, shaper, flat-top distribution, light pipe
相關次數: 點閱:296下載:27
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光束整型即是改變光束能量分佈型態的技術。一般雷射光束之能量分佈為高斯分佈。在許多應用上,都需要能量型態為均勻分佈的雷射光束,包括雷射加工,醫療上、半導體加工製造等。
    在低溫多晶矽製程技術上,為了將植離子佈植後的損傷降低,通常以活化過程回復。雷射活化法對於複晶矽薄膜的再結晶與雜質活化具有相當高的效率。因此,雷射光束之形狀、能量分佈及雷射脈衝時間間距,均會影響結晶之形式與品質。換言之,若欲得到所需之晶粒品質,則必須適當地控制雷射光束。
    本論文之目標在設計與建立一光學系統,將準分子雷射之原始光束操控轉換成為低溫多晶矽退火製程所需之規格。
    論文中提出一新型導光管技術,以傳統光學元件達成雷射光束整型之目的。技術上係以兩個正交方向之導光管分別調整雷射光束之方向實現。過程中先以序列性光學設計軟體Zemax進行光學元件的設計,再利用非序列性光線追跡軟體TracePro進行模擬並評估系統效能。在實驗上進行量測並與模擬結果進行比較。
    並規劃繞射元件設計製作。目標為使用繞射元件達到長條狀光束和均化能量的效果,預期使用單一元件取代整個光學系統達到簡化系統的目的,同時也與幾何光學所建構之系統進行比較與效能評估。


    Beam shaping is the technique of changing the energy distribution of a laser beam. The original energy distribution of a laser beam is Gaussian distribution. We usually need flat-top (or top-hat) energy distribution in many kinds of applications, such as laser processing, laser medical treat-ment, semiconductor processing, manufacturing and many more.
    The process of LTPS (Low Temperature Poly-crystalline Silicon) is to heat up amorphous silicon by laser beam, which will cause the material recrystallize when cooling down and become poly-crystalline silicon structure. The shape, energy distribution and pulse interval of the laser beam are all critical factors that influence the quality of crystallization.
    The goal of this thesis is to design an optical system for manipulat-ing an excimer laser beam to meet the required specification for LTPS process, including beam shape and energy distribution. Technically, we manipulate the light beam with two light pipes which are in the orthogo-nal dimension, respectively.
    The proposed technique uses light pipe and conventional lens ele-ment to manipulate the shape and energy distribution of a laser beam to meet the requirement of a specific application. The optical system was designed with a sequential ray tracing program, ZEMAX, and then the performance was verified with a non-sequential ray tracing program, TracePro. We compared the results of simulation and experiment.
    We have designed and manufactured DOE. We expect to use an op-tical element to replace the whole optical system as a compact solution. We also compare the results with the system which is constructed by geo-metrical optics model.

    中文摘要 Abstract 誌謝 Contents List of Figures Chapter 1 Introduction 1.1 Introduction to TFT 1.2 Introduction to LTPS 1.3 Motivation and Objective of Research 1.4 Organization of the Thesis Chapter 2 Laser Beam Shaping Techniques 2.1 Introduction 2.2 Basic Characteristic of Gaussian Beam 2.2.1 Transformation of Gaussian Beam 2.3 Category of Laser Beam Shaping Techniques 2.3.1 Geometrical Methods 2.3.1.1 Multi-Aperture Beam Integration 2.3.1.2 Refractive Optical System with Aspheric Lens 2.3.1.3 Gradient-Index Lens 2.3.1.4 Inverse-Gaussian Transmittive Filters 2.3.2 Diffractive Methods 2.3.2.1 Interlaced Binary Diffraction Gratings 2.4 Conclusion Chapter 3 Theories of System Design 3.1 Objective for Optical System Design 3.1.1 Aberration in Imaging System 3.1.2 Diffraction in Imaging System 3.1.3 Conclusion 3.2 Telecentric Configuration 3.3 Introduction to Diffraction Theory 3.3.1 Huygens-Fresnel Principle 3.3.2 Scalar Diffraction Theory 3.3.3 Fresnel and Fraunhofer Diffraction Chapter 4 Laser Beam Shaping System 4.1 Introduction 4.2 Principles of System 4.2.1 Configuration and Concept of Light Pipe 4.2.2 Lens Design 4.2.3 Issue of Light Pipe 2 4.2.4 Image Transformation 4.2.5 Compensation for Surface Reflection 4.2.6 Simulation Results 4.2.7 Conclusion 4.3 Introduction to DOE (Diffractive Optical Element) 4.3.1 Simulation Results 4.4 Conclusion Chapter 5 Experiment of Light Pipe Beam Shaper 5.1 Introduction 5.2 Construction of System 5.2.1 Experimental results 5.3 Conclusion Chapter 6 Conclusion 6.1 Achievement and Discussion 6.2 Future Work 作者簡介 75 Reference 76

    [1] 陳志強,LTPS低溫複晶矽顯示器技術,全華科技圖書股份有限公司,民國九十三年。
    [2] Fred M. Dickey and Scott C. Holswade, Laser Beam Shaping Theory and Tech-niques, MARCEL DEKKER, ed 1.0, 2000.
    [3] David L. Shealy and John A. Hoffnagle,“ Laser Beam Shaping Profiles and Propagation,” Appiled Optics, Vol. 45, No. 21, pp. 5118-5131, July 2006.
    [4] Keigo Iizuka, Elements of Photonics, John Wiley & Sons, ed. 1.0, 2002.
    [5] Amnon Yariv and Pcchi Yeh, Optical Waves in Crystals, John Wiley & Sons, 1984.
    [6] 丁勝懋,雷射工程導論,中央圖書出版社,民國八十七年。
    [7] 林三寶,雷射原理與應用,全華科技股份有限公司,民國八十年。
    [8] 許招墉,光電工學概論,全華圖書股份有限公司,民國七十九年。
    [9] S. P. Chang, J. M. Kuo, Y. P. Lee, C. M. Lu, and K. J. Ling, “Transformation of Gaussian to Coherent Uniform Beams by Inverse-Gaussian Transmittive Filters,” Applied Optics, Vol. 37, No. 4, pp. 747-752, February 1998.
    [10] C.Y. Han, Yukihiro Ishii, and Kazumi Murata, “Reshaping Collimated Laser Beams with Gaussian Profile to Uniform Profiles”, Applied Optics, Vol. 22, No. 22, pp. 3644-3647, November 1983.
    [11] Jeffery J. Kasinski, “Near-Diffraction-Limited Laser Beam Shaping with Dia-mond-Turned Aspheric Optics,” Optics Letters, Vol. 22, No. 14, pp. 1062-1064, July 1997.
    [12] W. W. Simmons, G. W. Leppelmeier, and B. C. Johnson, “Optical Beam Shaping Devices Using Polarization Effects,” Applied Optics, Vol. 13, No. 7, pp. 1629-1632, July 1974.
    [13] Yasser A. Abdelaziez, Partha P. Banerjee, and Dean R. Evans, “Beam Shaping by Use of Hybrid Acousto-Optics with Feedback,” Applied Optics, Vol. 44, No. 7, pp. 3473-3481, June 2005.
    [14] Xiaodong Zeng, Changqing Cao, and Yuying An, “Asymmetrical Prism for Beam Shaping of Laser Diode Stacks,” Applied Optics, Vol. 44, No. 26, pp. 5408-5414, September 2005.
    [15] S. Sinzinger, K. H. Brenner, J. Moisel, T. Spick, and M. Testorf, “Astigmatic Gradient-Index Elements for Laser-Diode Collimation and Beam Shaping,” Ap-plied Optics, Vol. 34, No. 29, pp. 6626-6632, October 1995.
    [16] N. Davidson, A. A. Friesem, and E. Hasman, “Reflective and Refractive Systems for General Two-Dimensional Beam Transformations,” Applied Optics, Vol. 33, No. 5, pp. 815-820, February 1994.
    [17] Phillip H. Malyak, “Two Mirror Unobscured Optical System for Reshaping the Irradiance of a Laser Beam,” Applied Optics, Vol. 31, No. 22, pp. 4377-4383, August 1992.
    [18] Yoshiharu Ozki and Kiichi Takamoto, “Cylindrical Fly’s Eye Lens for Intensity Redistribution of an Excimer Laser Beam,” Applied Optics, Vol. 28, No. 1, pp. 106-110, January 1989.
    [19] Y. Arieli, N. Eisenberg, A. Lewis, and I. Glaser, “Geometrical-Transformation Approach to Optical Two-Dimensional Beam Shaping,” Applied Optics, Vol. 36, No. 35, pp. 9129-9131, December 1997.
    [20] Guoxing Zheng, Chunlei Du, Chongxi Zhou, and Chunyan Zheng, “Micrograt-ing-Array Beam-Shaping Technique for Asymmetrical Laser Beams,” Applied Optics, Vol. 44, No. 17, pp. 3540-3544, June 2005.
    [21] Ximing Deng, Xiangchun Liang, Zezun Chen, Wenyan Yu, and Renyong Ma, “Uniform Illumination of a Large Targets Using a Lens Array,” Applied Optics, Vol. 25, No. 3, pp. 377-381, February 1986.
    [22] John A. Hoffnagle and C. Michael Jefferson, “Design and Performance of a Re-fractive Optical System that Converts a Gaussian to a Flattop Beam,” Applied Optics, Vol. 39, No. 30, pp. 5488-5499, October 2000.
    [23] John A. Hoffangle and C. Michael Jefferson, “Beam Shaping with a Plano-Aspheric Lens Pair,” Optical Engineering, Vol. 42, No. 11, pp. 3090-3099, November 2003.
    [24] Cheng Wang and David L. Shealy, “Design of Gradient-Index Lens System for Laser Beam Reshaping,” Applied Optics, Vol. 32, No. 25, pp. 4763-4769, Sep-tember 1993.
    [25] Fred M. Dickey and Scott C. Holswade, “Gaussian Laser Beam Profile Shap-ing, ” Optical Engineering, Vol. 35, No. 11, pp. 3285-3295, November 1996.
    [26] M. Duparre, M. A. Golub, B. Ludge, V. S. Pavelyev, V.A. Soifer, G. V. Uspleniev, and S. G. Volotovskki, “Investigation of Computer-Generated Diffractive Beam Shapers for Flattening of Single-Modal CO2 Laser Beams,” Applied Optics, Vol. 34, No. 14, pp. 2489-2497, May 1995.
    [27] Shuyan Zhang, Yuhang Ren, and Gunter Lupke, “Ultrashort Laser Pulse Beam Shaping,” Applied Optics, Vol. 42. No. 4, pp. 715-718, February 2003.
    [28] Markus Rossi and Thomas Hessler, “Stray-Light Effects of Diffractive Beam-Shaping Elements in Optical Microsystems,” Applied Optics, Vol. 38, No. 14, pp. 3068-3076, May 1999.
    [29] Shuyan Zhang, Qiguang Yang, and Gunter Lupke, “Spatial Beam Shaping of Ul-trashort Laser Pulses: Theory and Experiment,” Applied Optics, Vol. 44. No. 27, pp. 5818-5823, September 2005.
    [30] Juan Liu and Ben- yuan Gu, “Laser Beam Shaping with Polarization-Selective Diffractive Phase Elements,” Applied Optics, Vol. 39, No. 18. pp. 3089-3092, June 2000.
    [31] Markku Kuittinen, Pasi Vahimaa, Marko Honkanen, and Jari Turunen, “Beam Shaping in the Nonparaxial Domain of Diffractive Optics,” Applied Optics, Vol. 36, No. 10, pp. 2034-2041, April 1997.
    [32] Jia Jia, Changhe Zhou, Xiaohui Sun, and Liren Liu, “Superresolution Laser Beam Shaping,” Applied Optics, Vol. 43, No. 10, pp. 2112-2117, April, 2004.
    [33] W.B. Veldkamp, “Laser Beam Profile Shaping with Interlaced Binary Diffraction Gratings,” Applied Optics, Vol. 21, No. 17, pp. 3209-3212, September 1982.
    [34] 連世璋,雷射光束平坦化元件設計與製作,碩士論文,中華大學,民國93年。
    [35] Thomas Dresel, Mathias Beyerlein, and Johannes Schwider, “Design of Com-puter-Generated Beam Shaping Holograms by Iterative Finite-Element Mesh Adaption,” Applied Optics, Vol. 35, No. 35, pp. 6865-6874, December 1996.
    [36] Carl C. Aleksoff, Kenneth K. Ellis, and Bradley D. Neagle, “Holographic Con-version of a Gaussian Beam to a Near-Field Uniform Beam,” Optical Engineer-ing, Vol. 30, No. 5, pp. 537-543, May 1991.
    [37] Michael T. Eismann, A. M. Tai, and J. N. Cederquist, “Iterative Design of Holo-graphic Beamformer,” Applied Optics, Vol. 28, No. 13 pp. 2641-2650, July 1989.
    [38] Joonku Hahn, Hwi Kim, Kyongsik Choi, and Byoungho Lee, “Real-Time Digital Holographic Beam-Shaping System with a Generic Feedback Tuning Loop,” Ap-plied Optics, Vol. 45, No. 5, pp. 915-924, February 2006.
    [39] Eugene Hecht, Optics, Addison Wesley, ed. 4.0, 2002.
    [40] Robert E. Fisher and Biljana Tadic-Galeb, Optical System Design, McGraw- Hill, ed. 1.0, 2000.
    [41] Bernard Kress and Patrick Meyrueis, Digital Diffractive Optics, John Wiley & Sons, ed.1.0, 2000.
    [42] S.O Kasap, Optoelectronics and Photonics Principles and Practices, Prentice Hill, ed. 1.0, 2001.
    [43] Joseph W. Goodman, Introduction to Fourier Optics, McGraw-Hill, ed 2.0, 2002.
    [44] Milton Laikin, Lens Design, MARCEL DEKKER, ed. 3.0, 2001.
    [45] Andreas Schilling, Hans Peter Herzig, Laurent Stauffer, Urs Vokinger, and Mar-kus Rossi, “Efficiency Beam Shaping of Linear, High-Power Diode Lasers by Use of Micro-Optics,” Applied Optics, Vol. 40, No. 32, pp. 5852-5859, Novem-ber 2001.
    [46] 陳文傑,微機電DVD讀寫頭繞射光學元件設計與分析,碩士論文,台灣科技大學,民國93年。
    [47] Stefan Sinzinger and Jurgen Jahns, Microoptics, WILEY-VCH Gmbh & Co. KGaA, ed 2.0, 2003.
    [48] Jorgen Bengtsson, “Kinoform-Only Gaussian-to-Rectangular Beam Shaper for a Semiconductor Laser,” Applied Optics, Vol. 35, No. 20, pp. 3807-3814, July 1996.
    [49] S. N. Dixit, J. K. Lawson, K. R. Manes, and H. T. Powell, “Kinoform Phase Plates for Focal Plane Irradiance Profile Control,” Optics Letters, Vol. 19, No. 6, pp. 417-419, March 15, 1994.

    QR CODE