簡易檢索 / 詳目顯示

研究生: 蘇峻睿
Jyun-Ruei Su
論文名稱: 具平頂波束之超表面天線罩設計—應用於Ku-band衛星通訊
Design of Metasurface Radomes with flat-top beam for Ku-band Satellite Communication
指導教授: 謝松年
Sung-Nien Hsieh
口試委員: 林丁丙
Ding-Bing Lin
王蒼容
Chun-Long Wang
曾昭雄
Chao-Hsiung Tseng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 65
中文關鍵詞: 天線罩超表面波束整形技術第六代行動通訊
外文關鍵詞: Radome, Phase Gradient Metasurfaces, Beam-Shaping Technique, Sixth Generation Mobile Communications
相關次數: 點閱:286下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是使用在陣列天線之上方附掛超表面天線罩實現擴增原陣列天線主波束寬度以及擴散之效果。其研究頻段分別為上行14GHz至14.5GHz、下行10.7GHz至12.7GHz。在衛星通訊的應用中,會需要針對輻射場型進行調整,而現今常運用的方式,多為使用相控陣列天線的架構做處理,利用相移器或者數位訊號處理的方法來調整天線的輻射場型。
    倘若在輻射場型調整的應用場景較不複雜,則可以透過外加電磁結構的方式來調整天線的輻射能量,藉由天線罩對於電磁波的波相速提供不同的散射及折射效果。並於相同的量測環境之下,使主波束增加天線輻射場型的半功率波束寬度和具有平坦的效果。


    This study aims to achieve the effects of widening and diffusing the main beam width of the original antenna array by attaching a phase gradient metasurface lens above the array antenna. The research frequency bands are 14 GHz to 14.5 GHz for the uplink and 10.7 GHz to 12.7 GHz for the downlink. In satellite communication applications, it is often necessary to adjust the radiation pattern. The commonly used approach is to use phased array antenna architectures and employ phase shifters or digital signal processing methods to adjust the radiation pattern of the antenna.
    In cases where the radiation pattern adjustment requirements are less complex, the radiation energy of the antenna can be adjusted by adding external electromagnetic structures. The phase gradient metasurface lens is attached above the array antenna and provides different scattering and refractive effects on the electromagnetic waves. Under the same measurement environment, the half-power beam width of the antenna's radiation pattern is increased, and a flat effect is achieved on its beam peak.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 1 第一章 緒論 1 1.1 前言與動機 1 1.2 文獻探討 3 1.3 論文架構 6 2 第二章 陣列天線與饋電網路設計介紹 7 2.1 微帶天線 7 2.2 4×4平面矩形貼片陣列天線設計 9 2.2.1 陣列天線介紹 9 2.2.2 饋電網路設計 11 2.2.3 4×4平面矩形貼片陣列天線模擬與量測結果 13 3 第三章 天線罩基本理論 18 3.1 天線罩的功用 18 3.2 廣義折射定律 19 3.3 超表面天線罩設計 22 3.3.1 天線罩設計流程介紹 22 3.3.2 下行頻段天線罩設計模擬結果 29 3.3.3 上行頻段天線罩設計模擬結果 33 4 第四章 天線罩量測結果 36 4.1 量測環境介紹 36 4.2 陣列天線附掛天線罩之量測結果 38 4.2.1 下行頻段陣列天線附掛天線罩量測結果 38 4.2.2 上行陣列天線附掛天線罩之量測結果 44 5 第五章 結論 50 6 參考文獻 51

    [1] N. Gagnon, A. Petosa, and D. A. McNamara, "Comparison between conventional lenses and an electrically thin lens made using a phase shifting surface (PSS) at Ka Band," in 2009 Loughborough Antennas & Propagation Conference, 16-17 Nov. 2009 2009, pp. 117-120, doi: 10.1109/LAPC.2009.5352545.
    [2] N. Gagnon, A. Petosa, and D. A. McNamara, "Thin Microwave Quasi-Transparent Phase-Shifting Surface (PSS)," IEEE Transactions on Antennas and Propagation, vol. 58, no. 4, pp. 1193-1201, 2010, doi: 10.1109/TAP.2010.2041150.
    [3] M. I. Nabeel, M. U. Afzal, D. N. Thalakotuna, and K. P. Esselle, "Investigating Square Slot Unit Cell for Low-Cost Phase-Gradient Metasurfaces," in 2021 1st International Conference on Microwave, Antennas & Circuits (ICMAC), 21-22 Dec. 2021 2021, pp. 1-4, doi: 10.1109/ICMAC54080.2021.9678268.
    [4] P. V. K and B. Ghosh, "Dual-Band Flat-Top Pattern Synthesis Using Phase Gradient Metasurface," in 2020 International Symposium on Antennas & Propagation (APSYM), 14-16 Dec. 2020 2020, pp. 105-108, doi: 10.1109/APSYM50265.2020.9350675.
    [5] N. Gagnon, A. Petosa, and D. A. McNamara, "Electrically thin free-standing phase and amplitude shifting surface for beam shaping applications," Microwave and Optical Technology Letters, vol. 54, no. 7, pp. 1566-1571, 2012, doi:
    [6] C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O. Hara, J. Booth, and D. R. Smith, "An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials," IEEE Antennas and Propagation Magazine, vol. 54, no. 2, pp. 10-35, 2012, doi: 10.1109/MAP.2012.6230714.
    [7] S. Narayan, G. Gulati, B. Sangeetha, and R. U. Nair, "Novel Metamaterial-Element-Based FSS for Airborne Radome Applications," IEEE Transactions on Antennas and Propagation, vol. 66, no. 9, pp. 4695-4707, 2018, doi: 10.1109/TAP.2018.2851365.
    [8] M. Chen and G. V. Eleftheriades, "Omega-Bianisotropic Wire-Loop Huygens’ Metasurface for Reflectionless Wide-Angle Refraction," IEEE Transactions on Antennas and Propagation, vol. 68, no. 3, pp. 1477-1490, 2020, doi: 10.1109/TAP.2019.2948708.
    [9] G. A. Egorov and G. V. Eleftheriades, "Theory and Simulation of Metasurface Lenses for Extending the Angular Scan Range of Phased Arrays," IEEE Transactions on Antennas and Propagation, vol. 68, no. 5, pp. 3705-3717, 2020, doi: 10.1109/TAP.2020.2969781.
    [10] Y. Vahabzadeh, N. Chamanara, K. Achouri, and C. Caloz, "Computational Analysis of Metasurfaces," IEEE Journal on Multiscale and Multiphysics Computational Techniques, vol. 3, pp. 37-49, 2018, doi: 10.1109/JMMCT.2018.2829871.
    [11] Q. Yang et al., "Efficient flat metasurface lens for terahertz imaging," Opt. Express, vol. 22, no. 21, pp. 25931-25939, 2014/10/20 2014, doi: 10.1364/OE.22.025931.
    [12] Q. M. Yue, Y. L. Tan, L. L. Hu, F. Y. Wen, and C. Zhu, "Design and Analysis of Beam-Forming Metasurfaces with Amplitude and Phase Control," in 2021 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 23-26 May 2021 2021, pp. 1-3, doi: 10.1109/ICMMT52847.2021.9618302.
    [13] P. Zhang, S. Gong, and R. Mittra, "Beam-Shaping Technique Based on Generalized Laws of Refraction and Reflection," IEEE Transactions on Antennas and Propagation, vol. 66, no. 2, pp. 771-779, 2018, doi: 10.1109/TAP.2017.2778042.
    [14] T. Cai et al., "Ultra-Thin Polarization Beam Splitter Using 2-D Transmissive Phase Gradient Metasurface," IEEE Transactions on Antennas and Propagation, vol. 63, no. 12, pp. 5629-5636, 2015, doi: 10.1109/TAP.2015.2496115.
    [15] A. K. Singh, M. P. Abegaonkar, and S. K. Koul, "Wide Angle Beam Steerable High Gain Flat Top Beam Antenna Using Graded Index Metasurface Lens," IEEE Transactions on Antennas and Propagation, vol. 67, no. 10, pp. 6334-6343, 2019, doi: 10.1109/TAP.2019.2923075.
    [16] N. Gagnon, A. Petosa, and D. A. McNamara, "Thin phase-correcting lens antennas made using a three-layer phase-shifting surface (PSS) at Ka band," in 2010 14th International Symposium on Antenna Technology and Applied Electromagnetics & the American Electromagnetics Conference, 5-8 July 2010 2010, pp. 1-4, doi: 10.1109/ANTEM.2010.5552469.
    [17] D. M. Pozar, Microwave Engineering, 4th Edition. Wiley, 2011.
    [18] M. U. Afzal and K. P. Esselle, "A Low-Profile Printed Planar Phase Correcting Surface to Improve Directive Radiation Characteristics of Electromagnetic Band Gap Resonator Antennas," IEEE Transactions on Antennas and Propagation, vol. 64, no. 1, pp. 276-280, 2016, doi: 10.1109/TAP.2015.2493159.
    [19] N. Yu et al., "Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction," Science, vol. 334, no. 6054, pp. 333-337, 2011, doi: doi:10.1126/science.1210713.
    [20] J. Kim, G. A. Egorov, and G. V. Eleftheriades, "Huygens' Metasurfaces for Extending the Scan-range of Phased arrays," in 2022 16th European Conference on Antennas and Propagation (EuCAP), 27 March-1 April 2022 2022, pp. 1-4, doi: 10.23919/EuCAP53622.2022.9769290.
    [21] C. A. Balanis, Antenna Theory: Analysis and Design. Wiley, 2015.
    [22] Z. Larimore, S. Jensen, A. Good, A. Lu, J. Suarez, and M. Mirotznik, "Additive Manufacturing of Luneburg Lens Antennas Using Space-Filling Curves and Fused Filament Fabrication," IEEE Transactions on Antennas and Propagation, vol. 66, no. 6, pp. 2818-2827, 2018, doi: 10.1109/TAP.2018.2823819.
    [23] 阮佑宸(2023)。利用菲涅耳透鏡技術實現 應用於 Ku-band 衛星通訊之11111 平頂波束天線罩設計。碩士論文。國立臺灣科技大學。

    QR CODE