簡易檢索 / 詳目顯示

研究生: 孔垂鈞
TSUI-CHUN KUNG
論文名稱: 寬鎖頻範圍之除三與除四注入鎖定除頻器與低電壓左手共振腔架構壓控振盪器之設計
Design of Wide-Locking Range Divide-by-3 and Divide-by-4 Injection-Locked Frequency Divider and Low Power Voltage-Controlled Oscillator with Left-Handed Resonator
指導教授: 徐敬文
Ching-Wen Hsue
張勝良
Sheng-Lyang Jang
口試委員: 賴文政
Wen-Cheng Lai
黃進芳
Jhin-Fang Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 104
中文關鍵詞: 注入式鎖定除頻器增強二次諧波技術壓控震盪器C類放大器左手共振腔射頻類比積體電路設計
外文關鍵詞: ILFD, Enhanced 2nd Harmonic Technique, VCO, Class-C, Left-Handed Resonator, RFIC Design
相關次數: 點閱:267下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文提出了兩個注入式鎖定除頻器與一個低功耗左手雙共振振盪器電路之研究。首先提出了用線性混波技術實現的寬鎖頻範圍的除四注入式鎖定除頻器。第二個晶片展現了通過增強二階諧波訊號完成的寬鎖頻範圍除三注入式鎖定除頻器。最後,我們提出了一個高性能的雙頻帶CMOS左手共振壓控振盪器;以上三個電路都實現於台積電(TSMC) 0.18um CMOS製程。
    第一顆晶片展現了用線性混波技術實現的寬鎖頻範圍的新式除四注入式鎖定除頻器。當注入電晶體的汲極與源極偏壓為1伏特,而附加功率為0 dBm時,這顆除四注入式除頻器的除頻範圍大小為7.4 GHz,注入鎖定訊號範圍為7.2 GHz到14.6 GHz,除頻比例為67.89%。晶片面積為0.929×0.841毫米平方,實現於台積電(TSMC)0.18um製程。
    第二顆晶片為一個寬鎖定範圍注入鎖定式的新式除三除頻器,使用台積電(TSMC) 0.18 um製程製作而成。傳統的諧波混波注入式除三除頻器除頻的範圍很小,而這篇文章展現了一個用提升二階諧波訊號強度技術完成的寬除頻範圍的注入鎖定式除三電路設計。當這個除三注入鎖定除頻器的汲極與源極偏壓為1伏特,在注入訊號強度為0 dBm時,除頻範圍為4 GHz,注入鎖定訊號範圍為6 GHz至10 GHz(50%)。此晶片的大小為0.822×0.864毫米平方,核心功率消耗為7.72毫瓦。這個提出的電路是以交叉耦合的壓控振盪器為基礎所完成。
    最後,文章提出了一個可以操作在低電壓、低相位雜訊的Class-C架構的左手共振壓控振盪器。這個雙頻帶壓控振盪電路實現於台積電(TSMC)0.18um製程,晶片面積為0.749×0.527毫米平方。此篇壓控振盪器可以產生高頻帶6.09~6.21 GHz與低頻帶4.04~4.36 GHz的差動訊號,而整體的Figure Of Merit (FOM)值為高(低)頻190.15(187.24) dBc/Hz,供應電壓為0.65伏特,功耗為1.495毫瓦。這個壓控振盪器使用兩組左手共振諧振電路做串聯,諧振共振腔與交叉耦合電晶體對並聯以抵銷諧振共振腔的損耗。


    This thesis presents two Injection-Locked Frequency Dividers (ILFDs) and one VCO which using Left-Hand resonator. First one is a wide locking range Injection-Locked Frequency Divider by 4 designed with linear mixer technique. The second one is a wide locking range divide-by-3 Injection-Locked Frequency Divider through enhanced 2nd Harmonic. Finally, we present a high-performance CMOS left-handed voltage-controlled oscillator(LH VCO) with two frequency bands, above circuits are fabricated in the TSMC 0.18 um CMOS process.
    Firstly, we present a novel wide locking range divide-by-4 injection-locked frequency divider (ILFD) is proposed in this thesis. The thesis shows a wide locking range divide-by-4 ILFD designed with linear mixer technique. At the drain-source bias of 1 V, at the incident power of 0 dBm, the locking range of the divide-by-4 ILFD is 7.4 GHz, from the incident frequency 7.2 GHz to 14.6 GHz, the percentage is 67.89%. A novel wide locking range divide-by-4 injection-locked frequency divider (ILFD) is proposed in the thesis and was implemented in the TSMC 0.18 um 1P6M CMOS process.
    Secondly, a novel divide-by-3 injection-locked frequency divider (ILFD) is proposed and was implemented in the TSMC 0.18 μm 1P6M CMOS process. Conventional harmonic mixer divide-by-3 ILFD has limited locking range, this thesis shows a wide locking range divide-by-3 ILFD designed with enhanced 2nd harmonic technique. At the drain-source bias VDD of 0.8V and at the incident power of 0 dBm, the locking range of the divide-by-3 is 4GHz, from the incident frequency 6 GHz to 10 GHz, the percentage is 50%. The core power consumption is 7.72 mW. The die area is 0.939 ×0.885 mm2. The proposed ILFD is based on a cross-coupled voltage-controlled oscillator (VCO).
    Finally, the thesis proposes a low power, low phase noise Class-C CMOS voltage-controlled oscillator (VCO) using a left-handed (LH) LC network and a switching/tuning varactor pair. The proposed dual-band VCO has been implemented with the TSMC 0.18 μm 1P6M CMOS technology and the die area of the oscillator is 0.527 × 0.749 mm2. The VCO can generate differential signals in the high (low)-band frequency range of 6.09~6.21(4.04~4.36) GHz. The measured high (low)-band figure of merit (FOM) is -190.15 (-187.64) dBc/Hz. The core power consumption is 1.495mW. The VCO uses two units of LH LC resonator stacked in series, and the LC resonator is in shunt with a pair of cross-coupled transistors to compensate for the loss of LC resonator.

    中文摘要 Abstract 誌謝 Table of Contents List of Figures List of Tables Table of Contents Chapter 1 Introduction 1.1 Background 1.2 Thesis Organization Chapter 2 Overview of the Voltage-Controlled Oscillators 2.1 Introduction 2.2 Basic Theory of Oscillators 2.3 One-Port (Negative Resistance) View 2.4 Two-Port (Feedback) View 2.5 LC-Tank Oscillator 2.6 Single Transistor Oscillator 2.6.1 One-Port Oscillator (Negative-Gm Oscillator) 2.6.2 Cross-Coupled Oscillator 2.7 Quality Factor 2.8 Definition of Phase Noise 2.9 Inductor 2.10 Dual-Band Resonator Chapter 3 Concepts and Design of Injection Locked Frequency Divider 3.1 Principle of Injection Locked Frequency Divider 3.2 Locking Range 3.3 Direct ILFD Chapter 4 Wide-Locking Range Divide-by-4 Injection-Locked Frequency Divider Using Linear Mixer Approach 4.1 Introduction 4.2 Circuit Design 4.3 Measurement Results Chapter 5 Wide-Locking Range Divide-by-3 Injection-Locked Frequency Divider through Enhanced 2nd Harmonic 5.1 Introduction 5.2 Circuit Design 5.3 Measurement Results Chapter 6 Low Power Class-C Voltage-Controlled Oscillator with Left-Handed Resonator 6.1 Introduction 6.2 Circuit Design 6.3 Measurement Results Chapter 7 Conclusion References  

    [1] B. Razavi, “RF Microelectronics 2nd edition”, Upper Saddle River, NJ: Prentice Hall, 2010
    [2] S. Smith, “Microelectronic Circuit 4th edition” , Oxford University Press 1998.
    [3] J. Roggers, C. Plett, “Radio frequency integrated circuit design”, Artech House, 2003
    [4] N. M. Nguyen and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators”, IEEE J. Solid-State Circuit, vol. 27, no. 5, pp.810-820, May 1992
    [5] B. Razavi, “Design of Integrated Circuits for Optical Communications”, Mc Graw Hill.
    [6] S. J. Lee, B. Kim, K. Lee, “A Novel High-Speed Ring Oscillator for Multiphase Clock Generation Using Negative Skewed Delay Scheme”, IEEE Journal of Solid-State Circuits, vol. 32, No. 2, February 1997.
    [7] G. Gonzalez, “Microwave Transistor Amplifiers Analysis and Design”, Prentice Hall, 1997
    [8] S. H. Lee, S. L. Jang, “Implementation of New High Frequency CMOS VCOs and Injection-Locked Frequency Dividers ”, April 2007.
    [9] J. Aguilera, and R. Berenguer, “Design and test of integrated inductors for RF applications”, Kluwer Academic Publishers, 2004.
    [10] B. De Muer, M. Borremans, M. Steyaert, and G. Li. Puma, “A 2GHz low-phase-noise integrated LC-VCO set with flicker-noise upconversion minimization”, IEEE J. Solid-State Circuits, vol. 35, pp.1034-1038, 2000.
    [11] S.Levantino, C. Samori, A. Bonfanti, S. L. J. Gierkink, A. L. Lacaita, and V. Boccuzzi, “Frequency Dependence on Bias Current in 5GHz CMOS VCOs:impact on tuning range and flicker noise upconversion”, IEEE J. Solid-State Circuits, vol. 37, pp.1001-1003, 2002
    [12] T. H. Lee, “The Design of CMOS Radio Frequency Integrated Circuits”, Cambridge University Press, 1998
    [13] J. Craninckx and M. S. J. Steyaert, “A 1.8 GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 736–744, May 1997.
    [14] J. J. Kim, B. Kim, “A low-phase-noise CMOS LC oscillators with a Ring Structure,” ISSCC Digest of Technical Papers, pp.430-431, Feb. 2000.
    [15] J. Savoj, B. Razavi, High-Speed CMOS Circuits For Optical Receivers, Kluwer Academic Publishers, 2001.
    [16] A. Rofougaran, J. Rael, M. Rofougaran, and A. Abidi, “A 900 MHz CMOS LC-oscillator with quadrature outputs,” in IEEE ISSCC Dig. Tech. Papers, pp. 392-393, Feb. 1996.
    [17] T. Lee, and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326-336, Mar. 2000.
    [18] D. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, pp. 329–330, Feb. 1966.
    [19] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998.
    [20] A . Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620-628, Apr. 2001.
    [21] C. P. Yue, C. Ryu, JackLau, T. H. Lee, and S. Wong, “A physical model for planar spiral inductors on silicon,” 1996 International Electron Devices Meeting Technical Digest, pp. 155–158, Dec. 1996
    [22] A. Hajimiri, and T. H. Lee, “Design Issues in CMOS differential LC Oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717–724, May 1999.
    [23] A. Hajimiri and T. H. Lee, The Design of Low Noise Oscillators, Springer 1999.
    [24] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 1368-1382, Sept. 2000.
    [25] Marc Tiebout, Low Power VCO Design in CMOS, Springer 2009.
    [26] J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July 1996.
    [27] Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456-463, Mar. 1996.
    [28] J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, Apr. 2004.
    [29] H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
    [30] H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech. Papers, pp. 412-413, Feb. 2001.
    [31] H. D. Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 823-826, Sept. 2002.
    [32] R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOSinjection- locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits, pp. 47-50, June 2001.
    [33] P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An injection-locking scheme for precision quadrature generation,” IEEE J. Solid-State Circuits, vol. 37, pp. 845-851, July 2002.
    [34] W. Z. Chen, and C. L. Kuo, “18 GHz and 7 GHz superharmonic injection-lockeddividers in 0.25μm CMOS technology,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 89-92, Sept. 2002.
    [35] S. H. Lee, S. L. Jang, and Y. H. Chung, “A low voltage divide-by-4 injection locked frequency divider with quadrature outputs,” IEEE Microw.Wireless Compon. Lett., vol. 17, no. 5, pp. 373–375, May 2007.
    [36] K. Yamamoto and M. Fujishima, “70 GHz CMOS harmonic injection locked divider,” in IEEE Int. Solid-State Circuits Conf. Dig.,pp. 2472–2481, Feb. 2006.
    [37] S.-L. Jang, C.-H. Liu, C.-W. Chang, and M.-H. Juang," A low voltage, low power divide-by-4 LC-tank injection-locked frequency divider, " Int. J. Electronics., vol. 98, no. 4, pp. 521-527, April 2011.
    [38] S.-L. Jang, Y.–T. Chang, C.-W. Hsue and M.-H. Juang, ” Wide-locking range divide-by-4 injection-locked frequency divider using injection MOSFET DC-biased above threshold region,” published online Int. J. Circuit Theory and Applications 2015.
    [39] S.-L. Jang,C. C. Liu and C.-W. Chung,” A tail-injected divide-by-4 SiGe HBT injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol.19,no. 4,pp. 236-238, April 2009.
    [40] S.-L.Jang, and C.-Y. Lin, ” A wide-locking range Class-C injection-locked frequency divider,” Electronics Letters ., vol. 50, 23, pp.1710-1712, 2014.
    [41] S.-L.Jang, Y.-J. Chen, C.-H. Fang and W. C. Lai, ” Enhanced locking range technique for frequency divider using dual-resonance RLC resonator,” Electronics Letters ., vol. 51, 23, pp.1888-1889 , 2015.
    [42] S.-L.Jang, and C.-H. Fang, ”Divide-by-4 capacitive cross-coupled injection-locked frequency dividers,” published online, Oct. Analog Integr Circ Sig Process., 2015.
    [43] S.-L. Jang, and C.-C. Fu. ” Wide locking range divide-by-4 LC-tank injection-locked frequency divider using series-mixers’, Analog Integr Circ Sig Process, vol. 78, issue 2, pp. 523–528, Feb. 2014., Feb. 2014.
    [44] S.-L. Jang, and W.-C. Liu ” injection-locked frequency divider using single-injected dual-injection MOSFETs ,” published online, Microelectronics Journal 2015.
    [45] S.-L. Jang, Y.–T. Chang, C.-W. Hsue and M.-H. Juang, ” Wide-locking range divide-by-4 injection-locked frequency divider using injection MOSFET DC-biased above threshold region,” published online Int. J. Circuit Theory and Applications 2015.
    [46] S.-L. Jang, J.-F. Huang and F.-B. Lin,” wide-locking range LC-tank divide-by-4 injection-locked frequency divider using transformer feedback,” Int. J. RF and Microwave Computer-Aided Engineering, vol.25, no. 7, pp.557–562, 2015.
    [47] H. Wu and L. Zhang, “A 16-to-18GHz 0.18μm epi-CMOS divide-by-3injection-locked frequency divider,” in IEEE ISSCC Dig. Tech. Papers,Feb. 2006, pp.27–29.
    [48] S.-L. Jang, C.-W. Chang, C.-F. Lee, and J.-F. Huang,“Divide-by-3 LC injection locked frequency divider implemented with 3D inductors,” IEICE Trans. Electron., vol.E91-C, no.6,pp. 956–962,Jun. 2008.
    [49] S.-L. Jang,C.-Y. Lin, and C.-F. Lee,“A low voltage 0.35μm CMOS frequency divider with the body injection technique,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 7, pp.470–472, July 2008.
    [50] S.-L. Jang, C.-C. Liu, and J.-F. Huang,”Divide-by-3 injection-locked frequency divider using two linear mixers,”IEICE Trans. on Electron., Vol.E93-C,No.1,pp.136-139,Jan. 2010.
    [51] S.-L. Jang, and C.-W. Chang, ” A 90nm CMOS LC-tank divide-by-3 injection-locked frequency divider with record locking range,”IEEE Microw. Wireless Compon. Lett., vol. 20, pp.229-231, April, 2010.
    [52] S.-L. Jang, Y.-S. Chen, C.-W. Chang, and C.-C. Liu, ” A wide-locking range ÷3 injection-locked frequency divider using linear mixer,”IEEE Microw. Wireless Compon. Lett.,vol. 20, pp.390-392, July, 2010.
    [53] Wu J.-W, C.-C. Chen, H.-W. Kao, J.-K. Chen, and M.-C. Tu,”Divide-by-three injection-locked frequency divider combined with divide-by-two locking,” IEEE Microw. Wireless Compon. Lett., pp. 590-592, Nov.,2013.
    [54] Y.-T. Chen, M.-W. Li,H.-C. Kuo, T.-H. Huang, and H.-R. Chuang, “Low-voltage K-band divide-by-3 injection-locked frequency divider with floating-source differential injector,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 1, pp. 160–67, 2012.
    [55] K.-H. Chien, J. Y. Chen and H. K. Chiou, “Designs of K-band divide-by-2 and divide-by-3 injection-locked frequency divider with darlington topology,” IEEE Trans. Microw. Theory Tech., vol. 99, 2015.
    [56] S.-L.Jang and C.-Y. Chuang, ” Wide-locking range ÷3 series-tuned injection-locked frequency divider,” Analog Integr CircSig Process.,vol. 76, Issue 1, pp. 111-116,2013.
    [57] S.-L.Jang, and J.-H. Hsieh, ” A wide-locking range ÷3 injection-locked frequency divider using concurrent injection mechanisms,” Analog Integr Circ Sig Process., Vol. 77, pp 593-598, 2013.
    [58] S.-L.Jang, and C.-Y. Lin, ” A wide-locking range Class-C injection-locked frequency divider,”Electronics Letters .,vol. 50, 23, pp.1710-1712, 2014.
    [59] S.-L.Jang, C.-Y. Lin and M.-H. Juang, ” Enhanced locking range technique for a divide-by-3 differential injection-locked frequency divider,”Electronics Letters . vol.51, 6, 19 March 2015, p. 456 – 458.
    [60] C. F. Chang, and T. Itoh, “A dual-band millimeter-Wave CMOS oscillator with left-handed resonator,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 5, pp. 1401–1409, May 2010.
    [61] S.-L. Jang, H.-H. Lin and C.-W. Hsue,” Mode-switching left-handed standing wave voltage-controlled oscillator,” Microw. Opt. Technol. Lett. vol. 55, 9, pp. 1977–2244, Sept. 2013.
    [62] S.-L. Jang,, W.-H. Lee, and C.-W. Hsue, ” Fully-integrated standing wave oscillator using composite right/left-handed LC network,” Microw. Opt. Technol. Lett.., vol. 55, 5, pp.985-988, May. 2013.
    [63] M. Tohidian, A. Fotowat-Ahmadi, M. Kamarei,and F. Ndagijimana, “High-swing class-C VCO,” in ESSCIRC (ESSCIRC), 2011 Proceedings of the, Sept. 2011, pp. 495 –498.
    [64] J. Chen, F. Jonsson, M. Carlsson, C. Hedenas, and L.-R. Zheng, “A low power, startup ensured and constant amplitude Class-C VCO in 0.18um CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 8, pp. 427 –429, Aug. 2011.
    [65] S.-L. Jang, Y.-K. Wu, C.-C. Liu and J.-F. Huang, ” A dual-band CMOS voltage-controlled oscillator implemented with dual-resonance LC tank,” IEEE Microw. Wireless Compon. Lett., vol. 19, No. 12, pp.816-818, Dec. 2009.
    [66] S.-L. Liu, K.-H. Chen, and A. Chin, “A dual-resonant mode 10/22-GHz VCO with a novel inductive switching approach,” IEEE Trans. Microw. Theory Tech., vol. 60, pp. 2165–2177, Jul. 2012.
    [67] L. Jia, J. G. Ma, K. S. Yeo, M. A. Do, X. P. Yu, and W. M Lim, “A 1.8-V 2.4/5.15-GHz dual-band LC VCO in 0.18 μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., Vol. 16, pp. 194-196, Apr. 2006.

    無法下載圖示 全文公開日期 2019/01/22 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE