簡易檢索 / 詳目顯示

研究生: 邱伯權
Po-Chuan Chiu
論文名稱: 提升遠紅外線熱輻射元件效率的方法
Enhancing Conversion Efficiency of Far Infrared Heat Radiation Elements
指導教授: 李三良
San-Liang Lee
口試委員: 李三良
San-Liang Lee
洪勇智
Yung-Jr Hung
何文章
Wen-Jeng Ho
徐世祥
Shih-Hsiang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 64
中文關鍵詞: 遠紅外線熱輻射十字孔洞濾波
外文關鍵詞: far-infrared, heat radiation, cross filter
相關次數: 點閱:223下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文製作波長位於8-14 μm之遠紅外光發光元件,希望將此元件應用在生醫領域,例如加速傷口復原、增加血液循環等,以簡單、便宜的方式製作一個高效率的光源是本論文首要目標。
本論文改良先前製作之遠紅外線熱輻射發光元件,使熱輻射效率與熱輻射功率大幅上升。為了達到製程穩定性、低成本及大量製造的目標,本次與前次元件皆使用製程廠提供的0.35 µm CMOS標準製程製作,本論文也自行開發製程,希望突破標準製程的製程限制。
本次重新設計加熱絲材料,選用更高發射率的材料作為發射層,以達到高熱輻射效率與熱輻射功率。將加熱層位置往晶片表面移動,使其表面溫度升高,熱輻射功率與溫度成四次方正比,達到高熱輻射功率。本次元件也使用簍空玻璃基板,將PCB基板底下挖空,在晶片與基板中間墊一片150 μm的玻璃,以空氣隔絕熱能,防止熱能往基板散失。
本次元件經量測後,熱輻射效率與熱輻射功率皆比前次元件高,元件在6-V的偏壓下最高可達到1.42×10-3的發光效率,功率密度為0.542 mW/mm2,並實現發光頻譜波位於8至14 μm的波長。


This work develops a far-infrared thermal emitters operating at 8-14 μm wavelength range for medical applications, for example, to accelerate wound healing and enhance blood circulation. The goal of this work is to develop a high-efficiency light source in a simple and low-cost way.
This work improves the heat radiation power and power conversion efficiency of the previous work. To achieve good process stability, low cost, and large-scale manufacturing goals, we fabricate the far-infrared thermal emitters using the standard 0.35-μm CMOS process. We also fabricate the thermal emitters by using self-designed procedures.
In this work, the far-infrared light is emitted with material of high emissivity, which will enhance the radiation power and power conversion efficiency. To enhance the radiation power, we move the heater closer to the top surface, so the surface temperature can be raised to increase the heat radiation power that is proportional to the fourth power of temperature. Between the hollow substrate and device, a piece of glass is inserted to avoid heat conduction from device to substrate.
The measurements of fabricated thermal emitters indicate that the radiation power and power conversion efficiency are better than the previous work. The maximum conversion efficiency is 1.42×10-3 at a bias voltage of 6 V. The power density was 0.542 mW/mm2. The optical spectra are between 8 and 14 μm.

摘要 i Abstract ii 目錄 iv 圖目錄 vi 表目錄 ix 第一章 研究動機 1 1.1 前言 1 1.2 研究動機 1 1.3 紅外光在醫學上的運用 2 1.4 研究方向 2 1.5 論文架構 3 第二章 基本原理與技術 4 2.1 黑體輻射簡介 4 2.2 光譜發射率與發射層 6 2.3 加熱層與熱傳遞 9 2.4 十字孔洞金屬濾波器 11 第三章 元件模擬及封裝 13 3.1 元件結構 13 3.2 濾波層模擬 16 第四章 元件封裝與性能量測 20 4.1 遠紅外光頻譜量測 20 4.2 發光功率量測 24 4.3 溫度分布量測 30 4.4 IR元件比較 31 4.5 晶片封裝 32 第五章 以微機電製程實現FIR元件 35 5.1 前次製程設計與量測結果 35 5.2 元件結構設計 37 5.3 製程流程 40 第六章 結論 46 6.1 成果與討論 46 6.2 未來研究方向 48 參考文獻 49

[1] D. L. Woolard, R. Brown, M. Pepper, and M. Kemp, “Terahertz frequency sensing and imaging: A time of reckoning future applications?” Proceedings of the IEEE, vol. 93(10), 1722-1743, 2005.
[2] H. San, C. Li, X. Chen, R. Chen, and Q. Zhang, “Silicon-based micro-machined infrared emitters with a micro-bridge and a self-heating membrane structure,” IEEE Photonics Technology Letters, vol. 25(11), 1014-1016, 2013.
[3] 謝鸚爗、林招膨、劉威忠、林群智,“遠紅外線在醫學上之應用及其作用機制”,台灣應用輻射與同位素雜誌,3: 333-340,2007。
[4] 李湘琳,“探討遠紅外線於穴位照射對血液透析病患貧血之影響”,碩士論文,國立台北護理健康大學,2014。
[5] 詹博鈞,“利用標準CMOS製程製作十字網格濾波紅外線熱輻射發光元件”,碩士論文,國立台灣科技大學,2019。
[6] Y. Hamada, F. Teraoka, T. Matsumoto, A. Madachi, F. Toki, E. Uda, R. Hase, J. Takahashi, and N. Matsuura, “Effects of far infrared ray on Hela cells and WI-38 cells,” International Congress Series, vol. 1255, 339-341, 2003.
[7] J. S. Dover, T. J. Phillips, and K. A. Arndt, “Cutaneous effects and therapeutic uses of heat with emphasis on infrared radiation,” Journal of the American Academy of Dermatology, vol. 20(2), 278-286, 1989.
[8] 劉海平、沈雪勇、丁光宏,“針灸與經絡穴位紅外輻射特性”,中國針灸,24(2),2004。
[9] H. Tyokawa, Y. Matsui, J. Uhara, H. Tsuchiya, S. Teshima, H. Nakanishi, A-Hon. Kwon, Y. Azuma, T. Nagaoka, T. Ogawa, and Y. Kamiyama, “Promotive effects of far-infrared ray on full-thickness skin wound healing in rats,” Experimental Biology and Medicine, vol. 228(6), 724-729, 2003.
[10] W. J. Yoo, K. W. Jang, J. K. Seo, J. Moon, K. T. Han, J. Y. Park, B. G. Park, and B. Lee, “Development of a 2-Channel Embedded Infrared Fiber-Optic Temperature Sensor Using Silver Halide Optical Fibers,” Sensors, vol. 11(10), 9549-9559, 2011.
[11] N. M. Ravindra, B. Sopori, O. H. Gokce, S. X. Cheng, A. Shenoy, L. Jin, S. Abedrabbo, W. Chen, and Y. Zhang, “Emissivity Measurements and Modeling of Silicon-Related Materials: An Overview,” International Journal of Thermophysics, vol. 22(5), 1593-1611, 2001.
[12] J. Bartl and M. Baranek, “Emissivity of Aluminium and Its Importance for Radiometric Measurement,” Measurements of Physical Quantities, vol. 4(3), 31-36, 2004.
[13] H. Jia, Q. J. Wu, C. Jiang, H. Wang, L. Q. Wana, J. Z. JIANG, and D. X. Zhang, “High-transmission polarization-dependent active plasmonic color filters,” Applied Optics, vol. 58, 2019.
[14] Z Li, A. W. Clark, and J. M. Cooper, “Dual Color Plasmonic Pixels Create a Polarization Controlled Nano Color Palette,” Journal of ACS Nano,
Vol. 10, 492-498, 2016.
[15] A. M. Melo, A. L. Gobbi, M. H. O. Piazzetta, and A. M. P. A. da Silva, “Cross-Shaped Terahertz Metal Mesh Filters: Historical Review and Results,” Advances in Optical Technologies, vol. 2012(530512), 2012.
[16] S. T. Chase, R. D. Joseph, “Resonant array bandpass filters for the far infrared,” APPLIED OPTICS, Vol. 22, No. 11, 1983.
[17] V. Yu. Soboleva, D. A. Gomon, E. A. Sedykh, V. K. Balya, M. K. Khodzitskiı˘, “Development of narrow bandpass filters based on cross cavities for the terahertz frequency range,” Journal of Optical Technology, Vol. 84, No. 8, 23-26, 2017.
[18] K. D. Mőller, J. B. Warren, J. B. Heaney, and C. Kotecki, “Cross-shaped bandpass filters for the near- and mid-infrared wavelength regions,” Applied Optics, vol. 35(31), 6216215, 1996.
[19] T. Ott, M. Schossig, V. Norkus, and G. Gerlach, “Efficient thermal infrared emitter with high radiant power,” Journal of Sensors and Sensor Systems, vol. 4(2), 313-319, 2015.
[20] ICx Photonics, “Broadband Pulsed Infrared Light Sources,” Data Sheet, Oct. 2017.
(http://www.amstechnologies.com/fileadmin/amsmedia/downloads/2533_IR_Broadband_Sources.pdf)
[21] 賴世豪,“利用標準CMOS製程製作螺線型微型金屬加熱絲之紅外光熱輻射發光元件”,碩士論文,國立台灣科技大學,2018。

無法下載圖示 全文公開日期 2025/08/19 (校內網路)
全文公開日期 2025/08/19 (校外網路)
全文公開日期 2025/08/19 (國家圖書館:臺灣博碩士論文系統)
QR CODE