簡易檢索 / 詳目顯示

研究生: 吳瑞文
Rui-Wen Wu
論文名稱: 研究利用地溫調節通風溫度及熱輻射對於建築熱環境表現的影響
Field Measurements of Thermal Environment of a Building with an Earth-tube System and by Solar Irradiation
指導教授: 林怡均
Yi-Jiun Peter Lin
口試委員: 江維華
none
張倉榮
none
鄭明淵
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 187
中文關鍵詞: 實地量測地中管熱像儀表面溫度通風設計
外文關鍵詞: Field measurement, Earth-tube, Thermocamera, Surface temperature, Ventilation designs
相關次數: 點閱:227下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文在目標建築物「易構住宅」藉由實地量測的方式, 探討易構住宅室內環境表現, 與室外環境, 特別是熱輻射的強度, 及地中管設備的交互作用。本研究利用溫、濕度記錄器量測室外新鮮空氣進入地中管後的溫、濕度變化以及使用無線傳輸溫、濕度感測器監測易構住宅室內溫、濕度變化。此外, 本實驗使用熱像儀量測室內玻璃立面與牆壁的表面輻射溫度, 熱電偶量測室內玻璃立面與牆壁的溫度, 並且比較熱像儀與熱電偶的
    溫度誤差。

    過去的文獻顯示地中管在夏季能提供預冷的效果, 在冬季有預熱的效果。實地量測的結果顯示,11月份(秋季) 與12月份(冬季) 地中管內溫度隨著深度愈深, 溫度愈高, 且較為穩定, 在地下1.6 m 以下的溫度較不受大氣環境影響, 維持較穩定的溫度, 且土壤溫度由秋季至冬季逐漸下降。研究結果顯示地中管設備在11月份(秋季) 與12月份(冬季) 有預熱的
    效果, 啟用地中管設備可以預熱約2℃ 與4℃。

    熱像儀為非直接接觸式的測溫儀器, 可以快速地量測物體表面的溫度場, 與熱電偶量測結果的比較分析顯示, 當物體的放射率假設為1時, 熱像儀與熱電偶的誤差在±2℃ 之內, 以熱電偶的量測溫度為參考基準, 夏季的溫度誤差大部分為正值, 秋季的溫度誤差則大部分為負值。推測是因為夏季室內環境溫度較高, 熱像儀受環境溫度與其他周遭物體放射的紅外線影響, 導致拍攝的溫度值較高, 秋季則有相反的效應。研究結果顯示易構住宅的室內熱環境與平均太陽輻射強度以及太陽西曬的時間長短有高度的關聯。


    This research presents characteristics of thermal environment of EAG House in the spring, summer and fall seasons by experimental field measurements. The EAG House is equipped with an earth tube system. The thesis shows the influences of the earth tube and the solar irradiation on indoor thermal environment. This research uses four types of sensors; variation of air temperature and relative humidity in the earth tube were measured by the sensors with recorders; variation of indoor air temperature and relative humidity were measured by wireless RFID sensors; surface radiation temperature of glass windows and aluminum frames were measured by thermocamera; and
    glass windows, aluminum frames and walls temperature were measured by thermocouple. Thermocamera measurement results were compared to thermocouple measurement results in order to estimate its deviations.

    According to the literature, earth tube can provide precooling air in the summer and preheating air in the winter. Field measurements show that air temperature in the vertical shaft of the earth tube changes with its depth. In November and December, the temperature of the earth tube at the deeper position is higher and more stable. The temperature of the earth tube maintains around 25 to 26℃ in the fall season, and around 22 to 24℃ in the winter season at the underground depth from 1.6 to 3.2 meters. It shows that when the underground depth is larger than 1.6 meters, the temperature of the earth tube attains a steady value. However, the temperature of this underground level changes gradually from one season to another season. The results of measurement data in the earth tube show earth tube system can preheat the air from the outdoor about 2℃ in November, and 4℃ in December.

    Thermocamera is a non-contact thermometer that is capable to quickly scan and record surface temperature fields. Experimental results show the differences between thermocamera and thermocouple measurements are within ±2℃, when the emissivities are set to 1. Using thermocouple measurements as the reference values, thermocamera measurements show most of them are positive deviations in the summer season, but most of them are negative deviations in the fall season. The reason may because a higher environmental temperature in the summer. The thermocamera is disturbed by other environmental noise infrared radiation and results in higher temperature in the summer. On the contrary, there is an opposite effect in the fall season. The results of measurement data in EAG House building show strong relationship of the average solar irradiation and the duration of directly solar irradiation to indoor thermal environment.

    中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . i 英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 致謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 符號索引. . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii 1 緒論1 1.1 前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 自然通風設計建築. . . . . . . . . . . . . . . . . . . . . 2 1.2.2 地中管(Earth tube). . . . . . . . . . . . . . . . . . . . 3 1.2.3 紅外線熱影像. . . . . . . . . . . . . . . . . . . . . . . 6 1.3 研究動機與目的. . . . . . . . . . . . . . . . . . . . . . . 9 1.4 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 實驗建築、儀器及方法. . . . . . . . . . . . . . . . . . . . . 13 2.1 實驗建築. . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.1 地中管. . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.2 太陽煙囪. . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.3 實地量測. . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 實驗儀器及方法. . . . . . . . . . . . . . . . . . . . . . . 16 2.2.1 無線傳輸溫、濕度感測器. . . . . . . . . . . . . . . . . . 16 2.2.2 溫、濕度記錄器. . . . . . . . . . . . . . . . . . . . . . 16 2.2.3 熱電偶. . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.4 熱像儀. . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 量測方法. . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.1 儀器架設. . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.2 取樣拍攝. . . . . . . . . . . . . . . . . . . . . . . . . 25 3 實驗結果與分析. . . . . . . . . . . . . . . . . . . . . . . . 27 3.1 地中管系統. . . . . . . . . . . . . . . . . . . . . . . . . 27 3.1.1 垂直式風車導風系統. . . . . . . . . . . . . . . . . . . . 27 3.1.2 地中管. . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2 熱像儀實驗. . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2.1 溫、濕度變化. . . . . . . . . . . . . . . . . . . . . . . 37 3.2.2 表面溫度分佈. . . . . . . . . . . . . . . . . . . . . . . 46 3.2.3 熱像儀與熱電偶比較. . . . . . . . . . . . . . . . . . . . 49 4 結論與建議. . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.2 建議. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    [1] http://www.moeaboe.gov.tw/opengovinfo/Plan/all/energy year/main/, 經濟部能源局.
    [2] S. D. Fitzgerald & A. W. Woods, 2004, Natural ventilation of a room with vents at multiple levels. Building and Environment 39, 505-521.
    [3] 楊泰和,1995, 藉自然蓄溫母體直接調溫與供氣系統。中華民國專利公報257833。
    [4] V. Bansal, R. Misra, G. D. Agrawal & J. Mathur, 2010, Performance analysis of earth-pipe-air heat exchanger for summer cooling. Energy and Environment 42, 645-648.
    [5] V. Bansal, R. Misra, G. D. Agrawal & J. Mathur, 2009, Performance analysis of earth-pipe-air heat exchanger for winter heating. Energy and Environment 41, 1151-1154.
    [6] M. De Paepe & A. Janssens, 2003, Thermo-hydraulic design of earth-air heat exchangers. Energy and Buildings 35, 389-397.
    [7] 蔡佳嵐,2008, 應用地中管、外遮陽板和自然通風於MEGA House 之熱環境探討。台灣科技大學營建工程研究所碩士論文。
    [8] R. L. Sawhney, D. Buddhi & N. M. Thanu, 1999, An experimental study of summer performance of a recirculation type underground airpipe air conditioning system. Building and Environment 34, 189-196.
    [9] http://earthrangers.org/en-us/OurPrograms/Building/Overview.aspx, Earth Ranger Centre.
    [10] http://www.sara-project.net/, Primary School in La Tour de Salvagny.
    [11] http://www.passivhaustagung.de/Kran/First Passive House Kranichstein en.html, Kranichstein Passive House.
    [12] http://www.bsdlive.co.uk, Building Sustainable Design.
    [13] 謝正雄,1981, 紅外光偵測技術的原理和應用。科學月刊134。
    [14] 謝欣郁,2008, 雙波段紅外線乳癌診斷系統之研製與評估。國立台灣大學工學院暨醫學院醫學工程學研究所碩士論文。
    [15] 李明義、楊吉仕,2003, 應用影像處理與幾何分析技術於臨床患者之紅外線熱影像病徵檢驗定量分析。2003年生物醫學工程科技研討會。
    [16] Takahide Sakagami & Shiro Kubo, 2002, Development of a new non-destructive testing technique for quantitative evaluations of delamination defects in concrete structures based on phase delay measurement using lock in thermography. Infrared Physics & Technology 43, 311-316.
    [17] 陳俊菁,2004, 應用紅外線攝溫影像術檢測磁磚黏貼完整性。朝陽科技
    大學營建工程系碩士論文。
    [18] J. He & A. Hoyano, 2009, Measurement and simulation of the
    thermal environment in the built space under a membrane structure. Building and Environment 44, 1119-1127.
    [19] J. He & A. Hoyano, 2010, Measurement and evaluation of the summer microclimate in the semi-enclosed space under a membrane structure. Building and Environment 45, 230-242.
    [20] A. Krenzinger & A.C. de Andrade, 2007, Accurate outdoor glass thermographic thermometry applied to solar energy devices. Solar Energy 81, 1025-1034.
    [21] A. Moropoulou, N. P. Avdelidis, M. Koui & K. Kakaras, 2001, An application of thermography for detection of delaminations in airport pavements. NDT&E International 34, 329-335.
    [22] C. A. Balaras & A. A. Argiriou, 2002, Infrared thermography for building diagnostics. Energy and Buildings 34, 171-183.
    [23] 甯立言,2010, 兩個不同材質大面積玻璃建築室內熱環境之實驗量測與模擬分析研究。國立台灣科技大學機械工程研究所碩士論文。
    [24] 王智勇,2009, 研究運用太陽煙囪以及Trombe Wall 於自然通風設計建築。國立台灣科技大學機械工程研究所碩士論文。
    [25] Mikron Infrared, MikroScan 7600PRO Operator’s Manual, Oakland, NJ.
    [26] R. P. Benedict, 1984, Temperature, pressure and air flow measurement, 3rd edition, JOHN WILEY & SONS, Chapter 8.
    [27] 張文和,2008, 風車式導風裝置。中華民國專利公報M335661。
    [28] R.L. Powell, W.J. Hall, C.H. Hyink, L.L. Sparks, G.W. Burns, M.G. Scroger, and H.H. Plumb, 1974, Thermocouple Reference Tables Based on the IPTS-68, U.S. Department of Commerce, NBS Monograph 125.

    QR CODE