簡易檢索 / 詳目顯示

研究生: 許寬佑
Kuan-Yu Hsu
論文名稱: 以不同封裝結構對偏極化白光LED 表面溫度之研究
Study on the Surface Temperature of Polarized White Light Emitting Diodes Using Different Package Structures
指導教授: 蘇忠傑
Jung-Chieh Su
口試委員: 葉秉慧
Ping-Hui Yeh
林保宏
Pao-Hung Lin
楊恆隆
Heng-Lung Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 237
中文關鍵詞: 偏極化白光LED次波長金屬光柵奈米粒子
外文關鍵詞: Polarized white LED, Wire grid polarizing film, Nanoparticle
相關次數: 點閱:182下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 具有次波長金屬光柵的偏極化白光LED,除了光源具有偏極性之外,高消光比、降低眩光及提升顏色均勻性也是其優點,可廣泛應用於照明領域。由於本研究所使用的次波長金屬光柵為線柵薄膜偏光片(Wire grid polarizing film, WGF),其基板材料為三醋酸纖維素(Triacetate Cellulose, TAC),在高溫的環境下對於偏極化白光LED的耐久性影響甚大,因而改變光學品質,因此,降低具有高分子基板之偏光片的表面溫度為本研究目標。
    本研究針對白光LED封裝結構進行探討,我們在白光LED的螢光膠層表面添加一層導熱係數較佳的氧化鋁奈米粒子矽膠,以降低白光LED膠層的表面溫度,並將WGF與白光LED封裝後形成偏極化白光LED,觀察其光學品質及WGF表面溫度之變化。
    根據實驗的結果,在相同色溫下,添加奈米膠層以進行改良後,對於傳統白光LED而言,在連續驅動電流為160mA時,其膠層的表面溫度可降低原本的6.69%;然而,對於偏極化白光LED而言,降溫的效果不佳,在驅動電流為160mA時,WGF表面溫度則升高原本的4.11%。雖然添加奈米膠層無法同時對於白光LED和偏極化白光LED達到降溫的效果,但皆可以提升不同視角下的色溫、顏色和演色性均勻度,也可提升各電流下的演色性。
    為了瞭解WGF對白光LED反射的影響,本研究發現WGF對於不同LED的光場分佈會有著不同的反射率,而反射率和LED膠層至WGF之間的空隙大小,皆是影響WGF表面溫度的因素。


    The PLED(Polarized white light emitting diode) which packaged with the sub-wavelength metallic grating have extinction ratio, reduced glare and improved angular illumination uniformity in addition to polarization, and can be widely applied in the field of illumination. In this study, we used WGF(Wire grid polarizing film) as the sub-wavelength metallic grating, because WGF’s substrate material is triacetate cellulose(TAC), the durability of PLED is greatly affected in a high temperature environment, thus changing the optical quality. Therefore, dropping the surface temperature of WGF with polymeric substrate is the objective of this study.
    In this study, we discuss the package structures of WLED(White light emitting diode). We add a layer of Al2O3 NP resin(alumina nanoparticle resin) with better thermal conductivity to the surface of the phosphor resin of WLED to reduce the surface temperature of WLED. We will refer to the WLED with Al2O3 NP resin as the MLED(Modified white light emitting diode). To package the WGF with MLED, the optical quality of the MPLED(Modified polarized white light emitting diode) and the change in the surface temperature of the WGF were observed.
    According to the experimental results, at the same color temperature, under the continuous current is 160 mA, the surface temperature of MLED are 6.69% less than WLED, however, the surface temperature of MPLED are 4.11% more than PLED. Although the addition of Al2O3 NP resin can not drop the surface temperature of WLED and PLED abreast, it can not only improve the angular illumination uniformity and the current-dependent color stability, but also increase the color rendering.
    In order to understand the effect of WGF on the reflection of WLED and MLED, this study found that WGF has different reflectance for the luminance as a function of viewing angle for different LEDs, the reflectance and the gap between the LED’s resin layer and WGF are the surface temperature of WGF of impact factor.

    第一章 導論 1.1 前言 1.2 文獻回顧 1.2.1 偏極化白光LED 1.2.2 利用奈米粒子加入封裝材料以提升LED品質 1.3 次波長金屬光柵 1.3.1 設計理論 1.3.2 幾何因子 1.3.3 WGF次波長金屬光柵 1.4 論文架構 第二章 研究目的與方法 2.1 研究目的 2.2 量測架構與儀器 2.2.1 光學特性量測 2.2.1.1 白光LED光場量測 2.2.1.2 偏極化白光LED偏極性量測 2.2.2 積分球與I-V電性量測 2.2.3 白光LED之表面溫度量測 2.3 白光發光二極體封裝 2.3.1 封裝流程 2.3.2 田口式實驗法 2.3.3 透明矽膠層製作 第三章 具有奈米膠層之白光發光二極體 3.1 前言 3.2 不同奈米膠濃度對白光LED之影響 3.2.1 色溫 3.2.2 色座標 3.2.3 演色性 3.2.4 光譜 3.2.5 I-V曲線 3.2.6 光通量 3.2.7 表面溫度 第四章 偏極化白光發光二極體 4.1 偏極化白光LED封裝結構 4.2 偏極化白光LED製作 4.2.1 以望大之光通量進行MPLED製作 4.2.2 PLED製作 4.3 WGF次波長金屬光柵對白光LED之影響 4.3.1 色溫 4.3.2 色座標 4.3.3 演色性 4.3.4 光譜 4.3.5 發光效率 4.3.6 I-V曲線 4.3.7 消光比 4.4 同色溫下之WLED/PLED特性比較 4.4.1 色溫 4.4.2 色座標 4.4.3 演色性 4.4.4 光譜 4.4.5 發光效率 4.5 同色溫下奈米膠層對白光LED/偏極化白光LED之影響 4.5.1 同色溫下之WLED/MLED特性比較 4.5.1.1 色溫 4.5.1.2 色座標 4.5.1.3 演色性 4.5.1.4 光譜 4.5.1.5 發光效率 4.5.1.6 表面溫度 4.5.2 同色溫下之PLED/MPLED特性比較 4.5.2.1 色溫 4.5.2.2 色座標 4.5.2.3 演色性 4.5.2.4 光譜 4.5.2.5 發光效率 4.5.2.6 表面溫度 4.5.2.7 消光比 4.5.3 WGF次波長金屬光柵對WLED/MLED反射的影響 4.5.3.1 前言 4.5.3.2 WGF對不同入射角之偏振光/非偏振光之反射率 4.5.3.2.1 WGF模擬之模型建立與參數設定 4.5.3.2.2 模擬結果 4.5.3.3 WLED/MLED在不同視角下的出射光強度 4.5.3.4 結果與討論 4.6 同色溫下之WLED/PLED/MPLED特性比較 4.6.1 色溫 4.6.2 色座標 4.6.3 演色性 4.6.4 光譜 4.6.5 發光效率 4.7 以望小之表面溫度進行MPLED製作 4.8 同色溫下之PLED/MPLED特性比較 4.8.1 色溫 4.8.2 色座標 4.8.3 演色性 4.8.4 光譜 4.8.5 發光效率 4.8.6 表面溫度 第五章 結論與未來展望 5.1 結論 5.2 未來展望 參考文獻 附錄 附錄A. 透明矽膠層製作之第一次田口式實驗 附錄B. 透明矽膠層製作之第二次田口式實驗 附錄C. 以望大之光通量進行MPLED製作之第一次田口式 附錄D. 以望大之光通量進行MPLED製作之第二次田口式 附錄E. 以望小之表面溫度進行MPLED製作之第一次田口式 附錄F. 以望小之表面溫度進行MPLED製作之第二次田口式 附錄G. 各視角與各電流之光譜 附錄H. 以GSolver軟體進行WGF次波長金屬光柵之模擬 附錄I. CIE1976 UCS Diagram

    [1] T. Kasahara, D. Aizawa, T. Irikura, T. Moriyama, M. Toda, and M. Iwamoto, "Discomfort Glare Caused by White LED Light Sources," Journal of Light & Visual Environment, vol. 30, no. 2, pp. 95-103, 2006.
    [2] W. Pohlmann, T. Vieregge, and M. Rode, "High performance LED lamps for the automobile: needs and opportunities," in Manufacturing LEDs for Lighting and Display, 2007, vol. 6797, p. 15: SPIE.
    [3] P.-C. Lin, C.-H. Chen, H.-P. Yang, and H.-Y. Lin, "LED Polarization Conversion and Angular Shaping Module for LCD Backlighting," in International Optical Design Conference and Optical Fabrication and Testing, Jackson Hole, Wyoming, 2010, p. ITuC7: Optical Society of America.
    [4] E. Matioli et al., "High-brightness polarized light-emitting diodes," Light: Science &Amp; Applications, Original Article vol. 1, p. e22, 08/03/online 2012.
    [5] D. S. DeMille NF, Nakamura S., "Linearly polarized backlight source in conjunction with polarized phosphor emission screens for use in liquid crystal displays," Patent US20100220262A1, 2010.
    [6] J. H. Oh, S. J. Yang, Y. Rag, and Do, "Polarized white light from LEDs using remote-phosphor layer sandwiched between reflective polarizer and light-recycling dichroic filter," Optics Express, vol. 21, no. S5, pp. A765-A773, 2013/09/09 2013.
    [7] J.-C. Su and S.-C. Chou, "Performance comparison of polarized white light emitting diodes using wire-grid polarizers with polymeric and glass substrates," Optics and Laser Technology, vol. 100, pp. 40-44, 2018.
    [8] 林瓘洆, "提升具有次波長金屬光柵之偏極化白光LED的光學品質," 碩士論文, 國立台灣科技大學, 台北, 2013.
    [9] I. A. Lei, D.-F. Lai, T.-M. Don, W.-C. Chen, Y.-Y. Yu, and W.-Y. Chiu, "Silicone hybrid materials useful for the encapsulation of light-emitting diodes," Materials Chemistry and Physics, vol. 144, no. 1, pp. 41-48, 2014/03/14/ 2014.
    [10] P.-T. Chung, S.-H. Chiou, C.-Y. Tseng, and A. S.-T. Chiang, "Preparation and Evaluation of a Zirconia/Oligosiloxane Nanocomposite for LED Encapsulation," ACS Applied Materials & Interfaces, vol. 8, no. 15, pp. 9986-9993, 2016/04/20 2016.
    [11] C. I. Jo, J. Ko, Z. Yin, Y.-J. Kim, and Y. S. Kim, "Solvent-Free and Highly Transparent SiO2 Nanoparticle–Polymer Composite with an Enhanced Moisture Barrier Property," Industrial & Engineering Chemistry Research, vol. 55, no. 35, pp. 9433-9439, 2016/09/07 2016.
    [12] M.-S. Kang, T.-Y. Lee, M.-S. Kim, and S. Yoo, "Light efficiency of high brightness LED package with nanoparticle-mixed silicone encapsulant," in 6th Electronic System-Integration Technology Conference, ESTC 2016, September 13, 2016 - September 16, 2016, Grenoble, France, 2016, pp. ASE Group; et al.; Inemi; JSR Micro - Materials Innovation; PacTech; ST - Life.Augmented: Institute of Electrical and Electronics Engineers Inc.
    [13] P. T. Chung, C. T. Yang, S. H. Wang, C. W. Chen, A. S. T. Chiang, and C.-Y. Liu, "ZrO2/epoxy nanocomposite for LED encapsulation," Materials Chemistry and Physics, vol. 136, no. 2, pp. 868-876, 2012/10/15/ 2012.
    [14] Y. Xi and E. F. Schubert, "Junction–temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method," Applied Physics Letters, vol. 85, no. 12, pp. 2163-2165, 2004.
    [15] Y. He, J.-A. Wang, C.-L. Pei, J.-Z. Song, D. Zhu, and J. Chen, "Novel epoxy-silicone thermolytic transparent packaging adhesives chemical modified by ZnO nanowires for HB LEDs," Journal of Nanoparticle Research, journal article vol. 12, no. 8, pp. 3019-3024, October 01 2010.
    [16] J.-H. Huang, C.-P. Li, C.-W. Chang-Jian, K.-C. Lee, and J.-H. Huang, "Preparation and characterization of high refractive index silicone/TiO2 nanocomposites for LED encapsulants," Journal of the Taiwan Institute of Chemical Engineers, vol. 46, pp. 168-175, 2015/01/01/ 2015.
    [17] C. Prins, C. Schneider, W. IJzerman, T. Tukker, and J. t. T. Boonkkamp, "Freeform TIR collimators for the removal of angular color variation in white LED spotlights," in SPIE Optical Engineering + Applications, 2013, vol. 8834, p. 10: SPIE.
    [18] L. Yang, Z. Lv, Y. Jiaojiao, and S. Liu, "Effects of melamine formaldehyde resin and CaCO3 diffuser-loaded encapsulation on correlated color temperature uniformity of phosphor-converted LEDs," Applied Optics, vol. 52, no. 22, pp. 5539-5544, 2013/08/01 2013.
    [19] K.-J. Chen et al., "White light emitting diodes with enhanced CCT uniformity and luminous flux using ZrO2 nanoparticles," Nanoscale, 10.1039/C3NR06894C vol. 6, no. 10, pp. 5378-5383, 2014.
    [20] K.-C. Huang, Y.-R. Huang, T.-L. Chuang, S.-Y. Ting, S. H. Tseng, and J.-E. Huang, "Incorporation of anatase TiO2 particles into silicone encapsulant for high-performance white LED," Materials Letters, vol. 143, pp. 244-247, 2015/03/15/ 2015.
    [21] Y.-Y. Chang et al., "Influence of ZrO2 particles on the optical properties of pc-LEDs," Optical Materials, vol. 55, pp. 55-61, 2016/05/01/ 2016.
    [22] C. Hsin-Chu et al., "Improvement in uniformity of emission by ZrO 2 nano-particles for white LEDs," Nanotechnology, vol. 23, no. 26, p. 265201, 2012.
    [23] F. W. Mont, J. K. Kim, M. F. Schubert, E. F. Schubert, and R. W. Siegel, "High-refractive-index TiO2-nanoparticle-loaded encapsulants for light-emitting diodes," Journal of Applied Physics, vol. 103, no. 8, p. 083120, 2008.
    [24] G. R. Bird and M. Parrish, "The Wire Grid as a Near-Infrared Polarizer," Journal of the Optical Society of America, vol. 50, no. 9, pp. 886-891, 1960/09/01 1960.
    [25] I. Yamada, K. Takano, M. Hangyo, M. Saito, and W. Watanabe, "Terahertz wire-grid polarizers with micrometer-pitch Al gratings," Optics Letters, vol. 34, no. 3, pp. 274-276, 2009/02/01 2009.
    [26] D. Kim, "Polarization characteristics of a wire-grid polarizer in a rotating platform," Applied Optics, vol. 44, no. 8, pp. 1366-1371, 2005/03/10 2005.
    [27] L. Chen et al., "Large flexible nanowire grid visible polarizer made by nanoimprint lithography," Applied Physics Letters, vol. 90, no. 6, p. 063111, 2007.
    [28] J.-C. Su and T.-M. Lin, "Polarized white light emitting diodes with a nano-wire grid polarizer," Optics Express, vol. 21, no. 1, pp. 840-845, 2013.
    [29] T. Weber, H.-J. Fuchs, H. Schmidt, E.-B. Kley, and A. Tünnermann, "Wire-grid polarizer for the UV spectral region," in SPIE MOEMS-MEMS: Micro- and Nanofabrication, 2009, vol. 7205, p. 8: SPIE.
    [30] D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, "Homogeneous layer models for high-spatial-frequency dielectric surface-relief gratings: conical diffraction and antireflection designs," Applied Optics, vol. 33, no. 13, pp. 2695-2706, 1994/05/01 1994.
    [31] M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light: CUP Archive. 1999.
    [32] J. Turunen and F. Wyrowski, "Diffractive optics for industrial and commercial applications: Wiley-VCH," 1998.
    [33] J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, "High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids," Applied Physics Letters, vol. 90, no. 6, p. 061104, 2007.
    [34] Asahi KASEI. Available: http://www.asahi-kasei.co.jp/ake-mate/wgf/en/index.html
    [35] 周士傑, "以具有高分子基板之線柵薄膜偏光片封裝偏極化白光發光二極體," 碩士論文, 國立台灣科技大學, 台北, 2016.
    [36] K. Jong Kyu, L. Hong, S. Eric Fred, C. Jaehee, S. Cheolsoo, and P. Yongjo, "Strongly Enhanced Phosphor Efficiency in GaInN White Light-Emitting Diodes Using Remote Phosphor Configuration and Diffuse Reflector Cup," Japanese Journal of Applied Physics, vol. 44, no. 5L, p. L649, 2005.
    [37] X. Mou, N. Narendran, Y. Zhu, and I. U. Perera, "Optical and thermal performance of a remote phosphor plate," in SPIE Optical Engineering + Applications, 2014, vol. 9190, p. 6: SPIE.
    [38] 陳柏諱, "光譜可調之螢光轉換發光二極體光源," 碩士論文, 國立台灣科技大學, 台北, 2016.
    [39] Intematix. Available: http://www.intematix.com/
    [40] 李輝煌, 田口方法 : 品質設計的原理與實務 = Taguchi methods : principles and practices of quality design.
    [41] GSolver. Available: http://www.gsolver.com/
    [42] Mecanusa. Available: http://www.mecanusa.com/polarizer/wiregridpolarizer.htm

    QR CODE