簡易檢索 / 詳目顯示

研究生: 江宗穎
Tzong-Yiing Chiang
論文名稱: 固相及液相高分子基材中奈米微粒之形成、分散與光、電特性之研究
A study of nanoparticles formation, dispersion and optical-electronic performance in solid or liquid-phase polymeric matrix
指導教授: 邱顯堂
Hsien-Tang Chiu
口試委員: 邱士軒
Shih-Hsuan Chiu
李俊毅
Jiunn-Yih Lee
蘇清淵
Ching-Iuan Su
李貴琪
Kwe-Chi Lee
邱維銘
Wei-Ming Chiu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 130
中文關鍵詞: 聚吡咯丁腈橡膠原位聚合法UV光硬化性樹脂顏料濕式研磨法
外文關鍵詞: Polypyrrole, nitrile rubber, in situ polymerization, UV-cured resin, pigment, wet-milling
相關次數: 點閱:618下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究建立固相與液相高分子基材內中奈米微粒之形成、分散與其光學與電學性能應用之綜述,作為本研究之主軸。一般奈米微粒之形成係以由下至上(Bottom-up or Build -up)及由上至下(Top-down or Break-down)的方法完成。因此,第一個方式:使用固相高分子基材,如: 丁腈橡膠(Nitrile rubber),導入吡咯(Pyrrole, Py)、碳黑(Carbon black, CB)導電改質配方,探討其由下至上(Bottom-up)的奈米微粒成形法,藉由原位聚合法(In situ polymerization)及機械混掺法(Mechanical mixing),製備導電奈米微粒複合材料;第二個方式:則使用液相高分子基材,如: 紫外光硬化性樹脂(UV-cured resin),導入微米級之顏料配方,探討由上至下(Top-down)的奈米微粒之尺寸分佈變化,藉由高剪切均質機 (High-shear mixer)及濕式研磨法(Wet-milling),製備成奈米顏料懸浮液。此系統性之實驗歸納如下:
    針對由下至上(Bottom-up)之奈米微粒成形法:使用聚吡咯(Polypyrrole, PPy)、碳黑(Carbon black, CB)及其加乘改質系統(CB/ PPy complex)等導電改質劑,以雙輥輪機械混煉法進行掺合,並藉由單一步驟之原位聚合法將吡咯單體轉變形成聚吡咯奈米微粒,分散於丁腈橡膠 (Nitrile rubber, NBR)之固相高分子基材中,並以熱壓機進行硫化(交聯),可獲致具電子導電性之彈性體。再分析此改質複合材料之熱穩定性、分散形態、電子阻抗及機械特性。並分別探討電子傳導機制(電子傳導及電子/電子複合化傳導系統)對於電子性能之影響效應。我們的目標為研究PPy/NBR、CB/ NBR及CB/ PPy/ NBR 導電複合材料之導電粒子的分散性、電學性能及機械性質,評估其應用於印表機之導電印刷輥輪之可行性。並藉由實驗結果歸納下列5點: (1) 因為聚吡咯改質系統複合橡膠之強化效應及交聯度均較低。因此,聚吡咯改質系統複合橡膠的機械性質較差於碳黑改質系統與加乘改質系統。(2) 高含量之改質劑添加量條件下,聚吡咯改質系統複合橡膠的改質劑粒子之分散性較佳於碳黑改質系統與加乘改質系統。因其 PPy 粒子呈現較均勻分佈的分散態,球形的形狀及較小的粒徑(208.3 nm)。(3) 加乘改質複合橡膠 (碳黑-50 PHR/ 聚吡咯10 PHR/ 丁腈橡膠),具有最佳的分散態及熱穩定性,並形成相互連結的導電通路。另一方面,此最佳化的複合橡膠具有最好的電學性能,其阻抗值為 2.03 x 103 Ω-cm。(4) 相同改質劑濃度下,比較聚吡咯改質系統、碳黑改質系統與加乘改質系統複合橡膠之電學性能,結果皆呈現線性趨勢之體積電阻與導電穩定性。這現象說明了三種導電改質劑皆能均勻地分散及固定於丁腈橡膠基材中,並形成共連續相結構(Co-continuous phase structure)之均質的掺合物 (Homogeneous blends)。另外,我們發現改質複合材料的導電穩定性歸因於改質劑的較佳的分散態,可形成較健全的導電通路,並可由形態特性證明此電學特性。(5) 加乘改質系統(CB/ PPy complex)複合橡膠為最佳化的材料設計,其價值在於具有絕佳的熱穩定性、強化機械性質與加乘導電性等協同性能(Synergistic properties)。未來,我們希望可運用此多功能性的導電複合材料於工業上不同的應用層面,如:印表機之導電印刷輥輪。
    針對由上至下(Top-down)之奈米微粒成形法:我們使用UV光硬化性樹脂之液相高分子基材製備奈米顏料懸浮液,並探討其製備方法、顏料粒子的特性及其光學特性之應用。這些結果顯示改變分散方法與製程參數(如分散方式、分散劑效應及研磨時間等),則會對奈米顏料懸浮液的分散性及穩定性、顏料粒子的粒徑尺寸及形態與藍色濾光片的物性造成影響。並藉由實驗結果歸納下列3點: (1) 複合化均質研磨為本研究之最佳化之製程方法,其最佳條件為研磨3.5 小時,因此條件顯示其懸浮液具有最佳的分散穩定性,而其顏料粒子的尺寸趨近於奈米尺度(271 nm)。由於選擇適當的分散劑,使其具有較高的衝擊能與剪切力,有助於增加懸浮液中粒子間的反斥力及分散性,並減少顏料的粒徑尺寸。另一方面,此懸浮液中的顏料粒子未發生再聚集現象,這是因為粒子間的分散與團聚行為達到平衡,促使顏料懸浮液形成穩態結構(steady state)。(2) 懸浮液中的顏料粒徑愈小,可得到較佳的分散性及穩定性,並降低其沉降速度。(3) 使用複合化均質研磨法,研磨3.5小時後,所製備之奈米顏料懸浮液,應用於製作藍色濾光片,並獲至最佳化之穿透率(85.46%)、色飽和度(13.63%)及附著強度(5B leve1)。


    In this study, we were completely estsblish overview of formation and dispersion of nano-particle and their application on optical and electrical characterizations to regard as research concepts for solid-phase and liquid-phase polymeric matrix. Generally, formation of nano-particle can be carried out ‘Bottom-up or Build -up’ and ‘Top-down or Break-down’ method. Therefore, the first experiment mainly used nitrile rubber (NBR) and ‘Bottom-up’ method to prepare conducting nanoparticle composite by in situ polymerization with mechanical mixing for solid-phase polymeric matrix with conducting modification as pyrrole monomer and carbon black. In the second route, we mainly used UV-cured resin and ‘Top-down’ method to prepare nano-pigment suspension by high shear mixer and wet-milling method for liquid-phase polymeric matrix with micro-grade pigment formula. The results of the systematic experiment can be summarized as follows:
    For “Bottom-up” nanoparticle formation method: The electrically conductive elastomer blends based on polypyrrole(PPy), carbon black(CB) and their complex conducting modifier were dispersed by mechanical mixing in two roll mill, single-step of in situ polymerization of pyrrole to form PPy nano-particle into the presence of nitrile rubber (NBR) and vulcanized in a hot press. These modified composites were evaluated for thermal stability, dispersion morphology, electrical resistivity, and mechanical properties. In the other hand, electrical performance of modified composite was affected by the electronic conductivity mechanism as electronic and electronic/ electronic complex system, respectively. Our intention was to investigate the dispersibility of conducting particle, electrical and mechanical properties of PPy/NBR, CB/ NBR and CB/ PPy/ NBR conducting composites which can be evaluated to apply as a main material for conductive rollers in printer. According to experiment result summarized as follows:
    (1) Because of the reinforcement effect and crosslink degree of PPy--modified rubber are both lower. Therefore, the PPy-modified rubber has poorer mechanical properties than the carbon black--modified with PPy/ carbon black complex--modified rubber,
    (2) At the higher content of modifier, the dispersibility of PPy-modified composites is better than that of carbon black-filled with PPy/ carbon black complex-modified composites for modifier particle, hence there appears a uniformly dispersing status of PPy particle distribution, spherical particles and smaller particle size (208.3nm).
    (3) The CB/ polypyrrole complex modified of composite (containing CB 50 phr and polypyrrole 10 phr) have perfect dispersion state and thermal stability within NBR matrix to form contact with each other of conducting pathway. In the other hand, the optimum composite has best electrical performance in the resistivity value is 2.03 x 103 Ω-cm.
    (4) Comparing the electrical performmance of the polypyrrole /NBR, CB/NBR and CB/ polypyrrole /NBR at same concentraction of conducting modifier, the results showed that linear tendency of volume resistivity and conducting stability. This phenomenon indicate that three different of conductive modifier all can be uniformly dispersed and located in NBR matrix to form co-continuous phase structure and homogeneous blends. In other hand, we found that conducting stability of modified composite is attributed to better dispersion state of modifier to form whole conducting pathway as well as morphological characteristics of modifications were explored in the electrical properties.
    (5) Therefore, the CB/ polypyrrole/ NBR modified-composites is an optimum material design, it is worth mentioning that the superior performance as synergistic properties on thermal stability, reinforcement mechanical properties and compounding conductivity effect. In the future, we’ll wish to apply the multi-functions of conducting composites for various applications on industry as conductive rubber roller in printer.
    For “Top-down” nanoparticle formation method: We used UV-cured resin to prepare nano-pigment suspension and explored the preparation, particle characterizations and application of optical properties of the suspension for liquid-phase polymeric matrix. These results shown that changing dispersion method and processing parameters (as dispersion method, dispersant, milling time) to affect nano-dispersibility with stability of nano-pigment suspension, particle size with morphology of pigment particles and optical character, color evolution with adhesion ability of LCD-based blue filter. According to experiment result summarized as follows:
    (1) Composite wet-milling system is an optimum process method in this study which got the particle size close to nano-size (271 nm) and highly stability pigment suspension for 3.5 hrs milling time. Due to selecting suitable dispersant used in this composite wet-milling method, which possess higher impact energy and shearing forces could contribute to increase in rebound and dispersibility of suspension inter-particles and reduce pigment size. In the other hand, particles of pigment suspension wasn’t occurred re-agglomeration phenomenon, the result probably has evolved to a steady-state between the fragmentation and agglomeration behaviors.
    (2) Pigment particle size is smaller was obtained better dispersion state, stability and reduced sedimentation velocity in suspension.
    (3) The nano-pigment suspension applied to manufacture the LCD-based blue filter were obtained optimized transmission (85.46%), colour saturation (13.63%) and adhesion strength (5B leve1) by composite wet-milling for 3.5 hrs milling time.

    中文摘要…………………………………………………..…………………………І 英文摘要……………………………………………………...……………………Ш 誌謝………………………………………………………………...………………VI 目錄……………………………………………………………..…….………...…VII 圖表索引……………………………………………………………...………...…XII 第一章 緒論..……………………………………………………...……..…….……1 1.1. 研究背景及動機………………………………………….…...….….…………1 1.2 奈米微粒之成形技術……………………………………….………….…….…3 1.3 高分子奈米複合材料之製備與性能評估………………………...……....……6 1.4 材料系統回顧………………..………………………………………..…...……8 1.4.1 基材之選擇……………………...………………………………...……..…8 1.4.2 丁腈橡膠 (固相基材)…………..………………………………………….9 1.4.3 光硬化性樹脂 (液相基材)…………………………..……………….…..10 1.4.4 本質型導電高分子 (導電改質劑)………………………..………….…..12 1.4.5 碳黑 (導電改質劑)…………………………………………………….…13 1.5 固相分散技術之探討…………….………………………...……..………...…14 1.5.1 機械混煉法………..……………………...……………...…….…..…...…15 1.5.2 原位聚合法……………………….……...……………..…………....……17 1.6 液相分散技術之探討…………...…………………………………….….……18 1.6.1 濕式研磨法………………...……………………………………………...19 1.6.2 高速剪切均質法………...……………………………………………...…21 1.7 研究特徵及目的…………...…………….…………………………….………22 1.8 研究策略架構…………...……………………………….…………….………23 1.9 實驗架構…………………………………………………………….………....24 1.9.1丁腈橡膠導電複合材之製備實驗流程……………………….……….….24 1.9.2 奈米顏料懸浮液之製備實驗流程……………………………………..…25 1.10參考文獻…………………………………………………………………....…27 第二章 單一步驟原位聚合崁入型聚吡咯-丁腈導電橡膠之物性、奈米分散性及應用之研究…………………….…………………………………….……35 中文摘要…………………………………………………………...………….……36 英文摘要……………………………………………………………...………….…37 2.1 前言……………………………………………………………………….……38 2.2 實驗……………………………………………………………....……….……41 2.2.1 材料……….………………………………...………………………….…41 2.2.2 導電複合橡膠之製備…………………………………………………..…41 2.2.3 測試............................................................................................42 2.2.3.1 硫化試驗…………………………………………………………….42 2.2.3.2 TGA熱重量分析………………………………………………....42 2.2.3.3 形態學觀察…………………………………………………….……..42 2.2.3.4 電子導電測試…………………………………………………….…..42 2.2.3.5 機械性質測試…………………..……………………………….…....43 2.2.3.6 硬度試驗……………………………………………………….……..43 2.3 結果與討論…………………………………………………………….………44 2.3.1聚吡咯-丁腈複合橡膠之熱穩定性分析………………………….……...44 2.3.2 聚吡咯-丁腈複合橡膠之機械性質……………………………….…….45 2.3.3聚吡咯-丁腈複合橡膠之填充效應對電學性能之探討………………....46 2.3.4 聚吡咯-丁腈複合橡膠之表面形態觀察………………………………..47 2.3.5 應用於半導電性橡膠輥輪之性能與評估................................................48 2.4 結論 ………………………………………………………………..…….……49 2.5 參考文獻 ……………………………………………………………..….……51 第三章 碳黑/ 聚吡咯/ 丁腈橡膠導電複合材之協合特性及加乘導電效應之 研究……………………………………………………...……………...…61 中文摘要…………………………………………………………...………….....…62 英文摘要……………………………………………………………...…….…....…63 3.1 前言……………………………………………………………………….……64 3.2 實驗……………………………………...…………………………………..…66 3.2.1 材料………………………………………………………………..….66 3.2.2 導電改質複合橡膠之製備…………………………………………….….66 3.2.3 測 試…………………………………………………………….…....68 3.2.3.1 硫化試驗…………………………………………………………….68 3.2.3.2 TGA熱重量分析……………………………………...……….…68 3.2.3.3 形態學觀察…………………………………………………….….….69 3.2.3.4 電子導電測試…………………………………………………….…..69 3.2.3.5 機械性質測試…………………………………………………….…..69 3.2.3.6硬度試驗…………………………………………….…..…………….69 3.3 結果與討論 …………………………...…….………………..………….……70 3.3.1 熱穩定性分析………………………………………………………..70 3.3.2 機械性質分析……………………………………………………….…....71 3.3.3 導電改質劑對電學性能之影響……………………………….……72 3.3.3.1 導電改質複合材料的充填效應對於電學性能之影響…………...…73 3.3.3.2 探討形態對於電學性能之相互關係…………………………...……75 3.3.3.3 探討導電改質劑之分散性對於導電穩定性之相互關係...................75 3.4 結論 ………………………………………………………………..…….....…77 3.5 參考文獻………………………………………………………………….……80 第四章 奈米顏料懸浮液之製備、粒子特性及應用之研究……….…………...…93 中文摘要 …………………………………………………………………..…..…..94 英文摘要 …….………………………………………………………..…………...95 4.1 前言 ………….…………………………………………………..……....……96 4.2 實驗 ……………….…………………………………………………..………99 4.2.1 材料…………………….…………………………………….……….99 4.2.2 濕式研磨系統……………………………………………….……….99 4.2.3 有機奈米顏料懸浮液之製備………………………………….…..100 4.2.4 LCD-based 藍色濾光片之製備…………………………….……..100 4.2.5 多重取樣之分析型離心系統……………………………………...100 4.2.6 形態觀察…………………………………………………..….…….102 4.2.7 LCD-Based藍色濾光片之特性評估…………….…………...……….103 4.3 結果與討論 ……………………………………….…………………....……104 4.3.1 有機奈米顏料懸浮液之特性探討…………………………………104 4.3.1.1 製程差異對粒子尺寸分佈之影響效應……………….….….104 4.3.1.2 奈米顏料懸浮液之沉降速度分析.....................................................105 4.3.1.3奈米顏料懸浮液之穩定性分析………………………………....…..106 4.3.2 電子掃描顯微鏡表面觀察-奈米顏料分散性之探討………….…107 4.3.3 穿透式電子顯微鏡表面觀察-奈米顏料分散性之探討……….…107 4.3.4 應用於LCD-Based藍色濾光片之特性探討…………….……….108 4.3.4.1 UV-VIS光譜之穿透率分析……………………………………....…108 4.3.4.2 色彩變化評估………………………………………………….……108 4.3.4.3 黏著性分析…………………………………………………….……109 4.4 結論 …………………………………………………………………….……110 4.5 參考文獻 ……………………………………………………………….……112 第五章 總結論……………………………………………………….….………124 作者簡介…………………………………………………………………….….…128 著作目錄……………………………………………………………….…….……129

    第一章
    [1] R. Krishnamoorti, R. A. Vaia, Polymer nanocomposites, Washington, DC: ACS, 2002, 804.
    [2] R. Chapman, P. Mulvaney, Chem. Phys. Lett., 2001, 349, 358.
    [3] O. Wilson, G. J. Wilson, P. Mulvaney, Adv. Mater., 2002, 14, 1000.
    [4] P. J. Yoon, T. D. Fornes, D. R. Paul, Polymer, 2002, 43, 6727.
    [5] J. I. Park, J. J. Cheon, Am. Chem. Soc., 2001, 123, 5743.
    [6] E. V. Shevchenko, D. V. Talapin, H. Schnablegger, A. Kornowski, O. Festin, P. Svedlindh, M. Haase, H. Weller, J. Am. Chem. Soc., 2003, 125, 9090.
    [7] H. X. Zhao, R. K. Y. Li, J. Polym. Sci., Part B: Polym. Phys., 2005, 43, 3652
    [8] M. C. Kuo, C. M. Tsai, J. C. Huang, M. Chen, Mater. Chem. Phys., 2005, 90, 185.
    [9] D. H. Cole, K. R. Shull, P. Baldo, L. Rehn, Macromolecules, 1999, 32, 771.
    [10] B. J. Ash, R. W. Siegel, L. S. Schadler, J. Polym. Sci., Part B: Polym. Phys., 2004, 42, 4371.
    [11] S. A. Carter, J. C. Scott, P. J. Brock, Appl. Phys. Lett., 1997, 71, 1145.
    [12] M. Benaissa, M. JoseYacaman, T. D. Xiao, P. R. Strutt, Appl. Phys. Lett., 1997, 71, 3685.
    [13] G. Schmidt, M. M. Malwitz, Colloid Interface Sci., 2003, 8, 103.
    [14] E. Tekin, P. J. Smith, S. Hoeppener, A. M. J. van den Berg, A. S. Susha, A. L. Rogach, J. Feldmann, U. S. Schubert, Adv. Funct. Mater., 2007, 17, 23.
    [15] M. J. Li, J. H. Zhang, H. Zhang, Y. F. Liu, C. L. Wang, X. Xu, Y. Tang, B. Yang, Adv. Funct. Mater., 2007, 17, 3650.
    [16] M. J. Yang, Y. Dan, J. Appl. Polym. Sci., 2006, 101, 4056.
    [17] F. M. Pavel, R. A. Mackay, Langmuir, 2000, 16, 8568.
    [18] J. Raula, J. Shan, M. Nuopponen, A. Niskanen, H. Jiang, E. I. Kauppinen, H. Tenhu, Langmuir, 2003, 19, 3499.
    [19] Y. Yang, J. M. Huang, S. Y. Liu, J. C. Shen, J. Mater. Chem., 1997, 7, 131.
    [20] C. L. Lu, C. Guan, Y. F. Liu, Y. R. Cheng, B. Yang, Chem.Mater., 2005, 17, 2448.
    [21] H. Zhang, Z. C. Cui, Y. Wang, K. Zhang, X. L. Ji, C. L. Lu, B. Yang, M. Y. Gao, Adv. Mater., 2003, 15, 777.
    [22] J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, K. F. Jensen, Adv. Mater., 2000, 12, 1102
    [23] D. X. Li, Y. Cui, K. W. Wang, Q. He, X. H. Yan, J. B. Li, Adv. Funct. Mater., 2007, 17, 3134.
    [24] B. A. Kairdolf, A. M. Smith, S.M. Nie, J. Am. Chem. Soc., 2008, 130, 12866.
    [25] E. W. Edwards, M. Chanana, D. Y. Wang, H. Mo‥hwald, Angew. Chem. Int. Ed., 2008, 47, 320.
    [26] Y. Shen, M. Kuang, Z. Shen, J. Nieberle, H. W. Duan, H. Frey, Angew. Chem. Int. Ed., 2008, 47, 2227.
    [27] A. P. Leonov, J. W. Zheng, J. D. Clogston, S. T. Stern, A. K. Patri, A. Wei, ACS Nano, 2008, 2, 2481.
    [28] C. Artelt, H. J. Schmid, W. J. Peukert, Aerosol Sci., 2005, 36, 147
    [29] J. Israelachvili, Intermolecular and Surface Forces; Academic Press: London, 2000, 24.
    [30] G. Lagaly, Appl. Clay Sci., 1999, 15, 1.
    [31] P. F. Luckham, S. Rossi, Adv. Coll. Interface Sci., 1999, 82, 43.
    [32] P. V. Wright, Y. Zheng, T. Richardson, Polymer International, 1998, 47, 34-42.
    [33] D. L. Wise, G. E. Wnek, D. J. Trantolo, T. M. Cooper, J. D. Gresser. Electrical and optical polymer systems. New York: Marcel Dekker; 1997, 23.
    [34] L. E. Nielsen, Ind. Eng. Chem. Fund., 1974, 13, 17.
    [35] P. K. Pramanik, D. Khastgir, Composites, 1992, 23, 183.
    [36] D. M. Bigg, D. E. Stutz, Polym. Composite, 2004, 4, 40.
    [37] P. Johannes, M. Stefan, Chem. Rev., 2010, 110, 6260.
    [38] I. Ferry, Advanced Powder Technology, 2009, 20, 283.
    [39] K. Okuyama, I. W. Lenggoro, Chem. Eng. Sci., 2003, 58, 537.
    [40] M. Inkyo, T. Tahara, T. Iwaki, F. Iskandar, C.J. Hogan, K. Okuyama, J. Colloid Interface Sci., 2006, 304, 535.
    [41] M. E. El-Shall, A. S. Edelstein, Formation of clusters and nanoparticles from a supersaturated vapor and selected properties, Institute of Physics Publishing, Bristol, U.K., 1996, 13.
    [42] K. Okuyama, I. W. Lenggoro, Chem. Eng. Sci., 2003, 58, 537.
    [43] G. Schmid, Nanoparticles: from Theory to Application, Wiley-VCH, Weinheim, 2003, 69.
    [44] G. S. Bobby, W. N. Donald, D. B. Michael, Polymer, 2003, 44, 4389.
    [45] T. Yokoyama, C. C. Hung, Nanoparticle technology for the production of functional materials, KONA, 2005, 23, 7.
    [46] G. Jimbo: Funtai no Kagaku (Power Science), Koudansha, 1985, 33.
    [47] M. Inkyo, T. Kitakaze and T. Tahara, Proc. Autumn Symposium, Soc. Powder Technol., Japan, Kyoto, 1995, 249.
    [48] T. Yokoyama, Y. Taniyama, G. Jimbo, Q. Q. Zhao, J. Soc. Powder Technol., 1991 , 28(12), 751.
    [49] Y. Kawashima, M. Okumura and H. Takenaka, Science, 1982, 216, 1127.
    [50] K. Fujii, M. Inoki and T. Yokoyama, J. Soc. Powder Technol., Japan, 1984, 21(2), 778.
    [51] J. H. Koo, Polymer nanocomposites: Processing, characterization, and applications. McGraw-Hill, Colombus, 2006, 1-10
    [52] J. C. Halpin, J. L. Kardos, Polym. Eng. Sci., 1976, 16(5), 344.
    [53] T. S. Chow, J. Polym. Sci., 1978, 16, 959–65.
    [54] R. Krishnamoorti, R. A. Vaia, Polymer nanocomposites, Washington, DC: ACS, 2002, 800.
    [55] R. Chapman, P. Mulvaney, Chem. Phys. Lett., 2001, 349, 358.
    [56] O. Wilson, G. J. Wilson, P. Mulvaney, Adv. Mater., 2002, 14, 1000.
    [57] P. J. Yoon, T. D. Fornes, D. R. Paul, Polymer, 2002, 43, 6727.
    [58] G. Lagaly, Appl. Clay Sci., 1999, 15, 1.
    [59] P. F. Luckham, S. Rossi, Adv. Coll. Interface Sci., 1999, 82, 43.
    [60] G. Gouesbet, Optical Particle Sizing: Theory and Practice, Plenum Press, New York, 1988, 34.
    [61] P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods, World Scientific, Singapore, 1990, 82.
    [62] G. H. Meeten, Optical Properties of Polymers, Elsevier Applied Science Publishers, London, 1986, 57.
    [63] M. Vanecek, J. Holoubek, A. Shah, Appl. Phys. Lett., 1991, 59, 2237.
    [64] J. Holoubek, Part. Part. Syst. Char., 2001, 18, 286.
    [65] T. Sobisch, D. Lerche, Coll. Polym. Sci., 2000, 278 (4), 369.
    [66] T. Sobisch, D. Lerche, Rapid characterization of emulsions for emulsifier selection, quality control and evaluation of stability using multisample analytical centrifugation, SCI/ RSC/ SCS conference on cosmetics and colloids, London, 2005, 328.
    [67] T. Sobisch, H. Hes, H. Niebelschutz and U. Schmidt, Coll. Surf. A: Physicochem. Eng. Aspects, 2000, 162, 1.
    [68] D. Lerche, J. Dispersion Sci. Techn., 2002, 23 (5), 699.
    [69] T. Detloff, T. Sobisch, D. Lerche, Powder Technol., 2007, 174, 50.
    [70] E. Konrad, E. Tschunkur, German Patent, 1934, 658172.
    [71] R. A. Emmett, Ind. Eng. Chem., 1944, 36, 730.
    [72] N. Hofmann, Rubber Chem. Technol., 1963, 37, 52.
    [73] W. Lu, B. Li, M. Fu, Z. Huang, Sensor Actuators, 2000, 80, 38.
    [74] Y. K. Song, F. El-Tantawy, Macromolecular Res., 2002, 10, 345.
    [75] F. El-Tantawy, F. Kaneko, Y. K. Song, Eur. Polym. J., 2004, 40, 415.
    [76] F. El-Tantawy, K. Kamada, H. Ohnabe, J. Appl. Polym. Sci., 2003, 87, 97.
    [77] X. Y. Guo, G. L. Rempel, J. Appl. Polym. Sci., 1997, 65, 667.
    [78] K. Yoshikai, T. Ohsaki, and M. Furukawa, J. Appl. Polym. Sci., 2002, 85, 2053.
    [79]. M. Nasir, B.T. Poh, P.S. Ng, Eur. Polym. J., 1988, 24, 961.
    [80] L. Fredrizzi, F. Deflorian, G. Boni, P. L. Bonora and E. Pasini, Prog. Org. Coat., 1996, 29, 89-96.
    [81] D. R.Bauer, D. F. Mielewski, J. L. Gerlock, Polym. Degrad. Stab., 1992, 38, 57.
    [82] C. Decker, S.Biry, Prog. Org. Coat., 1996, 29, 81-87.
    [83] J. Pospišil, S. Nešpurek, Prog. Org. Sci., 2000, 25, 1261.
    [84] C. Decker, B.Elzaouk, J .Appl. Polym. Sci., 1997, 65, 833.
    [85] G. Gozzelino, G. Malucelli, V .Lambertini, J. Appl. Polym. Sci., 2000, 78, 458.
    [86] O. Yilmaz, E. Ozarslan, A. Yildiz, J. Appl. Polym. Sci., 1998, 69, 1837.
    [87] J. Huang, X. Huang, H. Liu, J. Appl. Polym. Sci., 1997, 65, 2095.
    [88] J. P. Fouassier, “Photoinitiation, photopolymerization and photocuring, Fundamentals and application”, Hanser publishers, 1995, 103.
    [89] G. Gozzelino; G. Malucelli, V. Lambertini, J. Appl. Polym. Sci., 2000, 78, 458.
    [90] Y.Tulay, O.Ozdemir, Y.Emel, K.Abdulkadir, J. Appl. Polym. Sci., 1998, 69, 1837.
    [91] H. J. Huang, X. L. Hui, J. Appl. Polym. Sci., 1997, 65, 2095.
    [92] S. K. Medda, D. Kundu and G. De, J. Non-Cryst. Solids, 2003, 318, 145.
    [93] Y. Koike, S. Matsuoka and H. E. Bair, Macromolecules, 1992, 25, 4807.
    [94] D. Chapman, R. J. Warm, A. G. Fitzgerald, A. D. Yoffe, J. Chem. Soc., Faraday Trans, 1964, 294, 60
    [95] H. Shirakawa, S. Ikeda, Polymer, 1971, 2, 23.
    [96] C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, E. J. Lousi, H. Shirakawa, S. C. Gau, A. G. MacDiarmid, Phys. Rev. Lett., 1977, 39, 1098
    [97] S, Bhadra, N. K. Singha, D. Khastgir, Synth. Met., 2006, 156, 1148.
    [98] J. Unsworth, B. A. Lunn, P. C. Innis, Z. Jin, A. Kaynak, N. G. Booth., J. Intel. Mat. Syst. Str., 1992, 3, 380.
    [99] P. N. Adam, P. J. Laughlin, A. P. Monkman, and A. M. Kenwright, Polymer, 1996, 37, 3411.
    [100] R.H. Baughman, Synthetic Metals, 1996, 78, 339.
    [101] P. Chiarelli, A. D. Santa, D. DeRossi, and A. Mazzoldi, J. Intell. Mater. Syst. Struct., 1995, 6, 32.
    [102] S. M. Park, H. J. Lee, Bull Kor. Chem. Soc., 2005, 26, 697.
    [103] M. Saroop, A. K. Ghosh, G. N. Mathur, Int. J. Plast. Technol., 2003, 7, 41.
    [104] J. M. Asua, Prog. Polym. Sci., 2002, 27, 1283.
    [105] T. M. Wu, H. L. Chang, Y. W. Lin, Compos. Sci. Tech., 2009, 69(5), 639.
    [106] T. M. Wu and S. H. Lin, J. Polym. Sci. Part A Polym. Chem., 2006, 44(21) ,6449.
    [107] E. K. Sichel, Carbon Black-Polymer Composites; Marcel Dekker: New York, 1982, 47.
    [108] F. Lyon, In Encyclopedia of Polymer Science and Engineering, Wiley: New York, 1985, 623.
    [109] J. B. Donnet, Carbon, 1994, 32, 1305.
    [110] X. Bourrat, Carbon, 1993, 31, 287.
    [111] M. H. Polley, B. B. Boonstra, Rubber Chem. Tech., 1957, 30, 170.
    [112] A. C. Patel, W. K. Lee, Elastomerics, 1990, 122(3), 14.
    [113] A. C. Patel, W. K. Lee, Elastomerics, 1990, 122(4), 22.
    [114] J. Accorsi, E. Romero, Plastics Eng., 1995, 51, 29.
    [115] P. M. Ajayan, L. S. Schadler, C. Giannaris, Adv. Mater., 2000, 12, 750.
    [116] K. Matsumoto, T. Yoshida, K. Okuyama, J. Soc. Powder Technol. Jpn., 2003, 40, 489.
    [117] J. M. McKelvy, In Polymer Processing; Wiley: New York, 1963, 28.
    [118] J. T. Bergen, In Processing of Thermoplastic Materials; Bernhard, E. C., Ed., Reinhold: New York, 1959, 6.
    [119] N. Tokita, J. L. White, J. Appl. Polym. Sci., 1966, 10, 1011.
    [120] J. L. White, N. Tokita, J. Appl. Polym. Sci., 1968, 11, 321.
    [121] J. S. Chong, J. Appl. Polym. Sci., 1966, 12, 191.
    [122] N. Tokita, Rubber Chem. Technol., 1987, 52, 387.
    [123] M. Alexandre, P. Dubois, Mater. Sci. Eng. Rep., 2000, 28, 1.
    [124] A. Rehab, N. Salahuddin, Materials Science and Engineering A, 2005, 399, 368.
    [125] G. S. Bluma, S. A. Gabriel, G. S. J. Fernando, Synthetic Metals, 2006, 156, 91.
    [126] C. L. Lu, B. Yang, J. Mater. Chem., 2009, 19, 2884.
    [127] J. Stoffer, M. Fahim, J. Coat. Technol. Rep., 1991, 63, 61.
    [128] Y. Hwang, H. S. Park, J. K. Lee, Current Applied Physics, 2006, 6S1, 67.
    [129] P. Keblinski, S. R. Phillpot, S. U. S. Choi, J. A. Eastman, International Journal of Heat and Mass Transfer, 2002, 45, 855.
    [130] D. Wasan, A. Nikolov, B. Moudgil, Powder Technology, 2005, 153, 135.
    [131] H. Yoshida, T. Nurtono, K. Fukui, Powder Technology, 2005, 150, 9.
    [132] Y. Ding, D. Wen, Powder Technology, 2005, 149, 84.
    [133] L. Jiang, L. Gao, Journal of Colloid and Interface Science, 2003, 260, 89.
    [134] H. Xie, H. Lee, W. Youn, M. Choi, Journal of Applied Physics, 2003, 94, 4967.
    [135] J. H. Fendler, Korean Journal of Chemical Engineering, 2001, 18, 1.
    [136] E. P. Hrishikesh, K. D. Sarit, Applied Physics Letter, 2003, 83 2931.
    [137] S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, E. A. Grulke, Applied Physics Letter, 2001, 79, 2252.
    [138] F. Muller, W. Peukert, R. Polke, Int. J. Miner. Process., 2004, 74, 31.
    [139] R. B. Mckay, Technological Applications of Dispersion, Dekker, New York, USA, 1994, 58.
    [140] H. Yoden, J. Itoh, J. Soc. Powder Technol. Jpn., 2004, 41, 457.
    [141] L. Mangolini, E. Thimsen, U. Kortshagen, Nano Lett., 2005, 5, 655.
    [142] L. Madler,W. J. Stark, S. E. Pratsinis, J. Appl. Phys., 2002, 92, 6537.
    [143] A. Kwade, Powder Technol., 1999, 105, 14.
    [144] F. Muller, R. F. Polke, Powder Technol., 1999, 105, 2.
    [145] T. Iwasaki, J. H. Kim, M. Satoh, Chem. Eng. Sci., 2006, 61, 1065.
    [146] T. Iwasaki, M. Satoh, T. Takahashi, Powder Technol., 2001, 119, 95.
    [147] W. Peukert, H.C. Schwarzer, F. Stenger, Chem. Eng. Process., 2005, 44, 245.
    [148] W. Peukert, Int. J. Miner. Process., 2004, 74, 3.
    [149] H.C. Schwarzer, W. Peukert, Chem. Eng. Sci., 2005, 60, 11.
    [150] M. Inkyo, Y. Tokunaga, T. Tahara, T. Iwaki, F. Iskandar, C. J. Hogan, K. Okuyama, Ind. Eng. Chem. Res., 2008, 47, 2597.
    [151] K. J. Myers, M. F. Reeder, D. Ryan, G. Daly, Chem. Eng. Prog., 1999, 95, 33.
    [152] B. A. Saadevandi, J. L. Zakin, Chem. Eng. Commun., 1996, 156, 227.
    [153] H. Schubert, Advances in the mechanical production of food emulsions, in: Proceedings of the 7th International Congress on Engineering and Food. Part1, 1997, 82.
    [154] J. Adler-Nissen, S. L. Mason, C. Jacobsen, Trans. IChemE, PartC, Food Bioproducts Process., 2004, 82(C4), 311.
    [155] A. T. Utomo, M. Baker, A. W. Pacek, Chem. Eng. Res. Des., 2009, 87, 533.

    第二章
    [1] J. Regan, in Polymer-Plastics Technology and Engineering, L. Naturman, editor, Marcel Dekker, New York, 1974, 47.
    [2] R. B Seymour, The Role of Fillers and Reinforcements in Plastics Technology, Polymer-Plastics Technology and Engineering, Taylor & Francis, New York, 1976, 57.
    [3] H. Q. Xie, Y. M. Ma and J. S. Guo, Polymer, 1999, 40, 261.
    [4] H. Q. Xie and Y. M. Ma, J. Appl. Polym. Sci., 2000, 77, 2156.
    [5] N. Ryvkina, I. Tchmutin, J. Vilcakova, M. Peliskova and P Saha, Synth. Met., 2005, 148(2), 141.
    [6] J. Anand, S. Palanapian, D.N. Sathyanarayana, Prog. Polym. Sci., 1998, 23, 993.
    [7] D. J. Sommers, Polym. Plast. Technol. Eng., 1984, 23 (1), 83.; A. M. Bishai, A. M. Ghoneim, A. Ward and A. F. Younan, Electrical, Polym-Plast Technol Eng, 2003, 42 (4), 701; M. R. Vallim, M.I. Felisberti and M.-A. De Paoli, J. Appl. Polym. Sci., 2000, 75, 677.
    [8] P. N. Adam, P. J. Laughlin, A. P. Monkman, and A. M. Kenwright, Polymer , 1996, 37, 3411.
    [9] F. Lux, Polymer, 1994, 35, 2915.
    [10] R.H. Baughman, Synthetic Metals, 1996, 78, 339.
    [11] P. Chiarelli, A. D. Santa, D. DeRossi, and A. Mazzoldi, J. Intell. Mater. Syst. Struct., 1995, 6, 32.
    [12] E. Smela, O. Inganas, Q. Pei, and I. Lundstrom, Adv. Mater., 1993, 5, 630.
    [13] De Paoli M-A, Waltman RJ, Diaz AF, Bargon J., J Chem Soc Chem Commun, 1984, 15, 1015.
    [14] H. S. Nalwa, Handbook of organic conducting molecules and polymers (vol. 2), Chichester: Wiley, 1997, 327.
    [15] S. J. Davies, T. G. Ryan, C. J. Wilde, G. Beyer, Synthetic Met., 1995, 69, 209.
    [16] M. S. Pinho, M. M. Gorelova, M. Dezzoti, B. G. Soares , A. J. Pertsin, Journal of Applied Polymer Science, 1998, 70, 1543.
    [17] E. L. Tassi, M-A De Paoli., Polymer, 1992, 33(11), 2427.
    [18] V. T. Truong, A. R. Codd and M. Forsyth, J. Mater. Sci., 1994, 29, 4331.
    [19] S. D. Radhakrishnan and S. P. Khedkar, Synth. Met., 1996, 79, 219.
    [20] M. Omastova, S. Kosina, J. Pionteck, A. Janke and J. Pavlinec, Synth. Met., 1996, 81, 49.
    [21] M. Omastova, I. Chodak and J. Pionteck, Synth. Met. , 1999, 102, 1251.
    [22] R. A. Zoppi, M. I. Felisberti and Marco-A. De Paoli, Journal of Polymer Science: Part A: Polymer Chemistry, 1994, 32, 1001.
    [23] R. A. Zoppi and Marco-A. De Paoli, Polymer, 1996, 37 (10), 1999.
    [24] M. Morton, editor. Rubber technology- 2nd, Van Nostrand Reinhold, New York, 1973, 16.
    [25] H. Ulrich, Introduction to Industrial Polymers, Hanser, Munich, 1982, 74.
    [26] M. E. Leyva, G. M. O. Barra, M. M. Gorelova, B. G. Soares, M. J. Sens, Appl. Polym. Sci., 2001, 80(4), 626.
    [27] Naoi et al., Semi-conductive rubber roller, US Patent -6319181, 2001
    [28] K.P. Sau, T.K. Chaki, and D. Khastgir, J Appl Polym Sci., 1999, 71, 887
    [29] A. Saigal, A.E. Giannakopoulos, H.E. Pettermann, S. Suresh, J. Appl. Phys. 1999, 86, 603.
    [30] W. Kohlhofe, R.K. Penny, Int. J. Pressure Vessels Piping, 1995, 61, 65.
    [31] M. Biswas and A. Roy, J. Polym. Mater., 1992, 9, 213.
    [32] Roselena Faez, Wilson A. Gazotti, Marco-A. De Paoli, Polymer, 1999, 40, 5497.
    [33] D. M. Bigg and D.E. Stutz, Polym. Comp., 1983, 4, 40.
    [34] A.D. McLeod, J.S. Haggerty, and D.R. Sadoway, J. Am. Ceram. Soc., 1984, 67, 705.
    [35] G.R. Ruschau, S. Yoshikawa, and R.E. Newnham, J. Appl. Phys., 1992, 72, 953 .
    [36] R. Zallen, The physics of amorphous solids, Wiley, New York, 1998, 19.
    [37] D. Staufer, Introduction to percolation theory, Taylor and Francis, London, U.K., 1985, 273.
    [38] B. Pukanszky and E. Fekete, In Mineral Fillers in Thermoplastics I; Springer 139: New York, 1999, 109.
    [39] A. Yamada, M. Hashimoto, Electroconductive rubber roller, US Patent -0252619 A1, 2006

    第三章
    [1] M. Morton, Rubber technology, Van Nostrand Reinhold, New York, 1973, 16.
    [2] H. Ulrich, Introduction to Industrial Polymers, Hanser, Munich, 1982, 39
    [3] M. E. Leyva, G. M. O. Barra, M. M. Gorelova, B. G. Soares, M. Sens, J. Appl. Polym. Sci., 2001, 80, 626.
    [4] M. R. Vallim, M. I. Felisberti, M. A. De Paoli, J. Appl. Polym. Sci., 2000, 75, 677.
    [5] E. L. Tassi, M. A. De Paoli, Polymer, 1992, 33, 2427.
    [6] E. K. Sichel, Carbon Black–Polymer Composites: The Physics of Electrically Conducting Composites, Marcel Dekker, New York, 1982, 181.
    [7] J. C. Huang, Adv. Polym. Tech., 1995, 14, 137.
    [8] C. Brosseau, F. Boulic, P. Queffelec, C. Bourbigot, Y. Le. Mest, J. Loaec, A. Beroual, J. Appl. Phys., 1997, 81, 882.
    [9] G. Wu, T. Miura, S. Asai, M. Sumita, Polymer, 2001, 42, 3271.
    [10] Ye. P. Mamunya, V. V. Davydenko, P. Pissis, E. V. Lebedev, Eur. Polym. J., 2002, 38, 1887.
    [11] J. L. Leblanc, Prog. Rubber Plast. Technol., 1994, 10, 110.
    [12] K. N. Pandey, D. K. Setua, G. N. Mathur, Polym. Test., 2003, 22 (3), 353.
    [13] F. Bueche, J. Appl. Phys., 1972, 43, 4837.
    [14] R. H. Norman, Electrically Conducting Rubber Composites, Elsevier, Oxford, 1970, 58.
    [15] K. P. Sau, T. K. Chaki, A. Chakraborty, D. Khastgir, Plast. Rubber Compos. Process. Appl., 1997, 26(7), 291.
    [16] M. E. Achour, J. L. Miane, F. Lahjomri, M. E. Malhi, F. Carmona, J. Mater. Sci. Lett., 1995, 14, 1425
    [17] P. J. MATHER, K. M. THOMAS, J. Mater. Sci., 1997, 32, 401.
    [18] J. B. Donnet, Carbon, 1994, 32, 1305.
    [19] X. Bourrat, Carbon, 1993, 31, 287.
    [20] M. R. Vallim, M. I. Felisberti, M. A. De Paoli, J. Appl. Polym. Sci., 2000, 75, 677.
    [21] P. N. Adam, P. J. Laughlin, A. P. Monkman, A. M. Kenwright, Polymer, 1996, 37, 3411.
    [22] R. H. Baughman, Synthetic Met., 1996, 78, 339.
    [23] E. Smela, O. Inganas, Q. Pei and I. Lundstrom, Adv. Mater., 1993, 5, 630.
    [24] M. Satoh, K. Kaneto, K. Yoshino, Synthetic Met., 1986, 14, 289.
    [25] A. F. Diaz, K. K. Kanazawa, G. P. Gardini, J. Chem. Soc. Chem. Commun., 1979, 14, 635.
    [26] A. F. Diaz, B. Hall, IBM J. Res. Dev., 1983, 27, 342.
    [27] M. Biswas, A. Roy, J. Appl. Polym. Sci., 1994, 51, 1575
    [28] L. X. Wang, X. G. Li, Y. L. Yang, React. Funct. Polym., 2001, 47, 125.
    [29] H. T. Chiu, J. H. Wang, J. Appl. Polym. Sci., 1998, 68, 1387.
    [30] J. S. Lin, Y. H. Huang, H. T. Chiu, Polym. Polym. Compos., 2001, 9, 351.
    [31] H. T. Chiu, J. H. Wu, J. Appl. Polym. Sci., 2005, 97, 711.
    [32] H. T. Chiu, J. S. Lin, and C. M. Huang, J. Appl. Electrochemistry, 1992, 22, 528.
    [33] H. T. Chiu, J. S. Lin, C. M. Huang, J. Appl. Electrochemistry, 1992, 22, 358.
    [34] H. T. Chiu, J. H. Wang, Polym. Composite., 1998, 19, 347.
    [35] J. S. Lin, H. T. Chiu, J. Polym. Res., 2002, 9, 189.
    [36] Z. Bakenov, I. Taniguchi, J. Power Sources, 2010, 195, 7445.
    [37] I. A. Amraee, A. A. Katbab, S. H. Aghafarajollah, R. H. Motamed, Rubber Chem. Technol., 1996, 69, 130.
    [38] D. W. Brazier, N. V. Schwartz, J. Appl. Polym. Sci., 1978, 22, 113.
    [39] B. Wessling, T. A. Skotheim, R. L. Elsenbaumer, J. R. Reynolds, Handbook of conducting polymers, Marcel Dekker, New York , 1998, 467.
    [40] G. Kraus, J. Appl. Polym. Sci., 1963, 7, 861.
    [41] J. L. Leblanc, Prog. Polym. Sci., 2002, 27, 627.
    [42] B. Wessling, Polym. Eng. Sci., 1991, 31, 1200.
    [43] R. Zallen, The physics of amorphous solids, Wiley, New York, 1998, 121.
    [44] D. Staufer, Introduction to percolation theory, Taylor and Francis, London, 1985, 93.
    [45] D. M. Bigg and D.E. Stutz, Polym. Comp., 1983, 4, 40.
    [46] A.D. McLeod, J.S. Haggerty, and D.R. Sadoway, J. Am. Ceram. Soc., 1984, 67, 705.
    [47] G. R. Ruschau, S. Yoshikawa, and R.E. Newnham, J. Appl. Phys., 1992, 72, 953 .
    [48] F. Gubbels, R. Jerome, P. Theyssie, E. Vanlanthem, R. Deltour, A. Calderone, V. Parente, J. L. Bredas, Macromolecules, 1994, 27, 1972.
    [49] M. Naoi, T. Nozawa, M. Ikeda, T. Ohki, Semiconductor rubber roller, US patent –6319181, 2001.

    第四章
    1. A. P. Alivisatos, Science, 1996, 271, 933.
    2. F. Muller, W. Peukert, R. Polke, F. Stenger, Int. J. Miner. Process, 2004, 74, 31.
    3. T. Yokoyama, C. C. Hung, KONA, 2005, 23, 7.
    4. R. B. Mckay, Technological Applications of Dispersion, Dekker: New York, USA, 1994, 103.
    5. J. F. Bishop, R.W. Wake, EP patent - 0965865, 1999.
    6. H. Yoden, J. Itoh, J. Soc. Powder Technol. Jpn., 2004, 41, 457.
    7. A. Kwade, Powder Technol, 1999, 105, 14.
    8. W. Peukert, H. C. Schwarzer and F. Stenger, Chem. Eng. Proc., 2005, 44, 245.
    9. T. Iwasaki, J. H. Kim, M. Satoh, Chem. Eng. Sci., 2006, 61, 1065.
    10. J. H. Jean, H. R. Wang, J. Am, Ceram. Soc., 1998, 81 (6), 1589.
    11. T. S. Suzuki, Y. Sakka, K. Nakano, K. Hiraga, J. Am. Ceram. Soc., 2001, 84, 2132.
    12. G. N. Howatt, R. G. Breckenridge, J. M. Brownlow, J. Am. Ceram. Soc., 1947, 30 (8), 237.
    13. J. G. Kloosterboer, GFCM Lijen, Polymer, 1990, 31, 95.
    14. W. Herbst, K. Hunger, Industrial Organic Pigments: Production, Properties, Applications, VCH, New York, 1993, 9.
    15. P. Gregory, High-Technology Applications of Organic Colorants, Plenum, New York, 1991, 69.
    16. J. M. Fu, Y. Li, J. L. Guo, J. Coll. Interf. Sci., 1998, 202, 450.
    17. P. Bugnon, Surface treatment of pigments, Prog. Org. Coat., 1996, 29, 39.
    18. R. G. Gnerlich, A. M. Pearson, A. V. Gangal, U.S. Patent - 5891231, 1999.
    19. G. Gouesbet, Optical Particle Sizing: Theory and Practice, Plenum Press, New York, 1988, 34.
    20. P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods, World Scientific, Singapore, 1990, 82.
    21. G. H. Meeten, Optical Properties of Polymers, Elsevier Applied Science Publishers, London, 1986, 57.
    22. M. Vanecek, J. Holoubek, A. Shah, Appl. Phys. Lett., 1991, 59, 2237.
    23. J. Holoubek, Part. Part. Syst. Char., 2001, 18, 286.
    24. T. Sobisch, D. Lerche, Coll. Polym. Sci., 2000, 278 (4), 369.
    25. T. Sobisch, D. Lerche, Rapid characterization of emulsions for emulsifier selection, quality control and evaluation of stability using multisample analytical centrifugation, SCI/ RSC/ SCS conference on cosmetics and colloids, London, 2005, 328.
    26. T. Sobisch, H. Hes, H. Niebelschutz and U. Schmidt, Coll. Surf. A: Physicochem. Eng. Aspects, 2000, 162, 1.
    27. D. Lerche, J. Dispersion Sci. Techn., 2002, 23 (5), 699.
    28. T. Detloff, T. Sobisch, D. Lerche, Powder Technol., 2007, 174, 50.
    29. D. Curvers, H. Saveyn, P. J. Scales, P. Van der Meeren, Chem. Eng. J., 2009, 148, 405.
    30. D. Fromer, D. Lerche, Arch. Appl. Mech., 2002, 72, 85.
    31. H. Yang, G. Zheng and M. C. Li, Part. Part. Syst. Char., 2008, 25, 406.
    32. R. Finsy, Adv. Coll. Interf. Sci. 1994, 52, 79.
    33. J. Holoubek, J. Quant. Spectrosc. Radiat. Trans., 2007, 106, 104.
    34. L. G. Austin, R.R. Klimpel, P. T. Luckie, Process Engineering of Size Reduction: Ball Milling, Society of Mining Engineers of AIME, New York, 1984, 25.
    35. G. Anestis, W. Schneider, Arch. Appl. Mech., 1983, 53, 399.
    36. M. R. Stivarius, F. W. Pohlmanb, K. S. McElyea, J. K. Apple, Meat. Sci., 2002, 60, 299.
    37. ASTM D 3359, Standard test methods for measuring adhesion by tape test, 2006.
    38. P. C. Knight, A. Johansen, H. G. Kristensen, T. Schaefer, J. P. K. Seville, Powder Technol., 2000, 110, 204.
    39. S. M. Iveson, J. D. Litster, K. Hapgood and B. J. Ennis, Powder Technol., 2001, 117, 3.
    40. S. Farrokhpay, G. E. Morris, D. Fornasiero and P. Self, Coll. Surf. A: Physicochem. Eng. Aspects, 2005, 253, 183.
    41. W. Graupner, S. Eder, K. Petritsch, G. Leising and U. Scherf, Synth. Met., 1997, 84, 507.

    無法下載圖示 全文公開日期 2016/05/10 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE