簡易檢索 / 詳目顯示

研究生: 呂婉婷
Wan-Ting Lu
論文名稱: 以表面活化還原法合成Pd @ Pt雙金屬觸媒及其電化學活性之探討
Pd@Pt Bimetallic Catalysts Prepared by Surface-activated Reduction Method and Their Electrochemical Activities
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 周澤川
Tse-Chuan Chou
蔡大翔
Dah-Shyang Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 166
中文關鍵詞: 直接甲醇燃料電池陰極觸媒表面活化還原法X光吸收光譜氧氣還原反應甲醇氧化反應
外文關鍵詞: diect methanol fuel cell (DMFC), cathode catalyst, surface activated-reduction method, X-ray absorption spectroscopy (XAS), oxygen reduction reaction, methanol oxidation reaction
相關次數: 點閱:336下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要目標為發展一種新穎方法(表面活化還原法)用以合成核心-殼層(Core-Shell)結構之Pd@Pt雙金屬觸媒,再以同步輻射X光吸收光譜分析觸媒之結構,並探討其對電化學催化甲醇氧化反應及氧氣還原之活性。
由X光吸收光譜量測結果顯示,本研究成功合成Pd為核心-殼層富有多Pt的奈米粒子結構,並由XRD及TEM得知,觸媒之晶粒及顆粒大小均約為4-5 nm。在此Pd@Pt雙金屬觸媒之電化學特性部分,由於Pt受到Pd之電子效應影響,因而增加Pt之氧氣還原催化活性,並提高甲醇氧化之容忍度。實驗數據亦顯示,經由適當的合成方式可以得到近乎單層之Pt沈積於Pd奈米粒子表面,若同時利用低濃度氫氣環境下之熱處理可進一步增加Pt覆蓋率,其中以100 oC為最佳溫度條件,可在觸媒不聚集的情況之下,有效增加Pt覆蓋率,並同時提升電化學催化活性及穩定性。


A new method to synthesize Pd@Pt core-shell bimetallic catalysts is developed in this research, which is called surface-activated reduction method. The catalyst structures of the synthesized Pd@Pt core-shell bimetallic catalysts are investigated by X-ray Absorption Spectroscopy (XAS) technique. In addition, their correlations between structures and electrochemical activity of oxygen reduction reaction (ORR) as well methanol oxidation reaction (MOR) are also investigated.
The synthesized Pd@Pt core-shell bimetallic catalysts have been demonstrated that the structure of particle consists of a Pd-rich core and a Pt-rich shell with average size of 4-5 nm. Their electrochemical results show that the activity of ORR is improved due to electronic effect of Pd. However, the MOR tolerance is also increased because the dehydrogenation reaction is hampered by Pd.
Under an appropriate heat-treatment procedure, the tendency of Pt monolayer structure, electrochemical activity and stability of Pd@Pt core-shell bimetallic catalysts are simultaneously and significantly improved.

摘要 I 致謝 III 目錄 IV 圖目錄 VII 表目錄 XIII 第一章 緒論 1 1.1. 前言 1 1.1.1. DMFC陽極觸媒 8 1.2.2. DMFC電解質 12 1.2.3. DMFC陰極材料 13 1.2. 研究動機與目的 17 第二章 文獻回顧及理論基礎 18 2.1. Pt-Pd觸媒 18 2.2. 欠電位沈積法原理 (under-potential deposition) 22 2.3. UPD法概念之延伸-表面活化還原法 24 2.4. X光吸收光譜原理 26 2.4.1. EXAFS 27 2.4.2. XANES 31 2.4.3. 數據分析 32 2.5. 電化學原理 37 2.5.1. 循環伏安法 37 2.5.2. 極化曲線 42 2.5.3. 旋轉盤電極(Rotating Disc Electrode, RDE) 43 2.5.4. 旋轉環盤電極(Rotating Ring-Disc Electrode, RRDE) 45 2.6. XRD分析原理 48 第三章 實驗設備與方法 50 3.1. 實驗藥品及設備 50 3.1.1. 實驗藥品 50 3.1.2. 儀器設備 51 3.2. 實驗方法 52 3.2.1. 陰極觸媒製備 52 3.2.1.1. 以商業Pd/C觸媒合成PtPd/C觸媒 52 3.2.1.2. 以自製Pd/C觸媒合成PtPd/C觸媒 53 3.2.1.2.1. 碳黑之前處理 53 3.2.1.2.2. 合成Pd/C核點 54 3.2.1.2.3. 方法一 連續曝氫 55 3.2.1.2.4. 方法二 不連續曝氫 56 3.2.1.2.5. 熱處理 57 3.2.2. 材料鑑定與分析 58 3.2.2.1. XRD分析 58 3.2.2.2. TEM分析 59 3.2.2.3. ICP-AES感應偶合電漿放射光譜儀 60 3.2.2.4. 電化學特性測試 60 3.2.2.4.1. 電極片製備 61 3.2.2.4.2. 電化學特性量測 61 3.2.2.5. X光吸收光譜 63 3.2.2.5.1. EXAFS之曲線適配 63 3.2.2.5.2. 以X光吸收光譜分析觸媒結構 64 第四章 結果與討論 68 4.1. 陰極金屬觸媒材料之特性分析 68 4.1.1. ICP-AES感應耦合電漿放射光譜 69 4.1.2. 材料之晶相與形態之分析 70 4.2. 觸媒之結構鑑定 79 4.2.1. X光吸收進邊緣結構(XANES) 79 4.2.2. 延伸X光吸收微細結構(EXAFS) 85 4.3. 電化學特性量測結果 104 4.3.1. 觸媒在硫酸水溶液中之循環伏安分析 104 4.3.2. 氧氣還原極化曲線 109 4.3.3. 電催化甲醇氧化循環伏安分析 114 4.4. 觸媒穩定性測試 118 4.4.1. 電化學穩定性測試 118 4.5. 理論計算模擬 124 4.5.1. Pt(111)表面 125 4.5.2. 電荷轉移(charge transfer) 128 4.5.3. 氧氣還原反應 134 第五章 討論 138 5.1. 實驗方法差異與結構機制之探討 138 5.2. 陰極觸媒材料之氧化還原活性探討 146 5.3. 陰極觸媒材料之甲醇氧化活性碳討 153 5.4. 熱處理之影響 153 第六章 結論 159 參考文獻 161

1. L. Carrette, K.A.F., U. Stimming,, "Fuel Cells - Fundamentals and Applications". Fuel Cells, 2001. 1(1) 5-39.
2. Sundmacher, K., et al., "Dynamics of the direct methanol fuel cell (DMFC):experiments and model-based analysis". Chemical Engineering Science, 2001. 56 333.
3. Frelink, T., W. Visscher, and J.A.R. van Veen, "On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt". Surface Science, 1995. 335(C) 353-360.
4. Gasteiger, H.A., et al., "Methanol electrooxidation on well-characterized Pt-Ru alloys". Journal of Physical Chemistry, 1993. 97(46) 12020-12029.
5. Rauhe, J.B.R., F.R. McLarnon, and E.J. Cairns, "Direct Anodic Oxidation of Methanol on Supported Platinum/Ruthenium Catalyst in Aqueous Cesium Carbonate". Journal of The Electrochemical Society, 1995. 142(4) 1073-1084.
6. Brankovic, S.R., et al., "Carbon monoxide oxidation on bare and Pt-modified Ru(101?0) and Ru(0001) single crystal electrodes". Journal of Electroanalytical Chemistry, 2002. 532(1-2) 57-66.
7. Lu, C., et al., "UHV, Electrochemical NMR, and Electrochemical Studies of Platinum/Ruthenium Fuel Cell Catalysts". The Journal of Physical Chemistry B, 2002. 106(37) 9581-9589.
8. Beden, B., et al., "Electrocatalytic oxidation of methanol on platinum-based binary electrodes". Journal of Electroanalytical Chemistry, 1981. 127(1-3) 75-85.
9. Hamnett, A., "Mechanism and electrocatalysis in the direct methanol fuel cell". Catalysis Today, 1997. 38(4) 445-457.
10. Lin, W.F., et al., "Electrocatalytic activity of Ru-modified Pt(111) electrodes toward CO oxidation". Journal of Physical Chemistry B, 1999. 103(33) 6968-6977.
11. Smotkin, E.S., "Potential-dependent infrared absorption spectroscopy of adsorbed CO and X-ray photoelectron spectroscopy of arc-melted single-phase Pt, PtRu, PtOs, PtRuOs, and Ru electrodes". Journal of Physical Chemistry B, 2000. 104(15) 3518-3531.
12. Zhong, C.J. and M.M. Maye, "Core-shell assembled nanoparticles as catalysts". Advanced Materials, 2001. 13(19) 1507-1511.
13. Shukla, A.K., et al., "Carbon-supported Pt-Fe alloy as a methanol-resistant oxygen-reduction catalyst for direct methanol fuel cells". Journal of Electroanalytical Chemistry, 2004. 563(2) 181-190.
14. Watanabe, M., Y. Furuuchi, and S. Motoo, "Electrocatalysis by ad-atoms. Part XIII. Preparation of ad-electrodes with tin ad-atoms for methanol, formaldehyde and formic acid fuel cells". Journal of Electroanalytical Chemistry, 1985. 191(2) 367-375.
15. Ledjeff-Hey, K. and A. Heinzel, "Critical issues and future prospects for solid polymer fuel cells". Journal of Power Sources, 1996. 61(1-2) 125-127.
16. Carrette, L., K.A. Friedrich, and U. Stimming, "Fuel cells: Principles, types, fuels, and applications". ChemPhysChem, 2000. 1(4) 163-193.
17. Watanabe, M., M. Uchida, and S. Motoo, "Preparation of highly dispersed Pt + Ru alloy clusters and the activity for the electrooxidation of methanol". Journal of Electroanalytical Chemistry, 1987. 229(1-2) 395-406.
18. Chu, D. and S. Gilman, "Methanol electro-oxidation on unsupported Pt-Ru alloys at different temperatures". Journal of The Electrochemical Society, 1996. 143(5) 1685-1690.
19. Ley, K.L., et al., "Methanol oxidation on single-phase Pt-Ru-Os ternary alloys". Journal of The Electrochemical Society, 1997. 144(5) 1543-1548.
20. Venkataraman, R., H.R. Kunz, and J.M. Fenton, "Development of new CO tolerant ternary anode catalysts for proton exchange membrane fuel cells". Journal of The Electrochemical Society, 2003. 150(3) A278-A284.
21. Reddington, E., et al., "Combinatorial electrochemistry: A highly parallel, optical screening method for discovery of better electrocatalysts". Science, 1998. 280(5370) 1735-1737.
22. Arico, A.S., et al., "Investigation of a carbon-supported quaternary PtRuSnW catalyst for direct methanol fuel cells". Journal of Power Sources, 1995. 55(2) 159-166.
23. Choi, W.C., J.D. Kim, and S.I. Woo, "Quaternary Pt-based electrocatalyst for methanol oxidation by combinatorial electrochemistry". Catalysis Today, 2002. 74(3-4) 235-240.
24. Ramesh, K.V., et al., "Preparation and characterization of carbon-based fuel-cell electrodes with platinum-group bimetallic catalysts". Journal of Electroanalytical Chemistry, 1987. 223(1-2) 91-106.
25. Couturier, G., et al., "Electrocatalysis of the hydrogen oxidation and of the oxygen reduction reactions of Pt and some alloys in alkaline medium". Electrochimica Acta, 1987. 32(7) 995-1005.
26. 呂崇銘, "白金-合金/Nafion觸媒電極之製備與其氣固氣-固相氧氣還原反應之動力探討", 化學工程系,碩士, 1992.東海大學.
27. Mukerjee, S., S. Srinivasan, and M.P. Soriaga, "Role of structural and electronic properties of Pt and Pt alloys on electrocatalysis of oxygen reduction". Journal of The Electrochemical Society, 1995. 142(5) 1409-1422.
28. Hamann, C.H., A. Hammnett, and W. Vielstich, Electrochemistry, ed. 1st. 1998: Wiley-VCH, Weinheim.
29. Wroblowa, H.S., P. Yen Chi, and G. Razumney, "Electroreduction of oxygen a new mechanistic criterion". Journal of Electroanalytical Chemistry, 1976. 69(2) 195-201.
30. Tarasevich, M.R., A. Sadkowski, and E. Yeager, Comprehensive Treatise of Electrochemistry. Oxygen Electrochemistry, ed. J.O. Bockris, et al. 1983, New York. 301.
31. Yeager, E., "Dioxygen electrocatalysis: mechanisms in relation to catalyst structure". Journal of Molecular Catalysis, 1986. 38(1-2) 5-25.
32. 林冠男, "密度泛涵理論在Pt15, Pt11Fe4和Pt11Co4團簇上對氧氣還原之研究", 化學工程所,碩士, 2006.台灣科技大學.
33. Damjanovic, A. and V. Brusic, "Electrode kinetics of oxygen reduction on oxide-free platinum electrodes". Electrochimica Acta, 1967. 12(6) 615-628.
34. E. Yeager, M.R., D. Gervasio, A. Razaq, Structural Effects in Electrocatalysis and Oxygen Electrochemistry, ed. D. Scheerson, et al. Vol. 92-11. 1992: The Electrochemical Society Inc., Pennington, NJ, 40
35. Shao, M.H., et al., "Palladium Monolayer and Palladium Alloy Electrocatalysts for Oxygen Reduction". Langmuir, 2006. 22(25) 10409-10415.
36. Zhang, J., et al., "Mixed-Metal Pt Monolayer Electrocatalysts for Enhanced Oxygen Reduction Kinetics". Journal of the American Chemical Society, 2005. 127(36) 12480-12481.
37. Takako, T., et al., "Enhancement of the Electroreduction of Oxygen on Pt Alloys with Fe, Ni, and Co". Journal of The Electrochemical Society, 1999. 146(10) 3750-3756.
38. Zhang, J., et al., "Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates". Angewandte Chemie - International Edition, 2005. 44(14) 2132-2135.
39. Green, C.L. and A. Kucernak, "Determination of the platinum and ruthenium surface areas in platinum-ruthenium alloy electrocatalysts by underpotential deposition of Copper. I. Unsupported catalysts". Journal of Physical Chemistry B, 2002. 106(5) 1036-1047.
40. Inukai, J., et al., "Underpotential deposition of copper on iodine-modified Pt(111): In situ STM and ex situ LEED studies". Journal of Physical Chemistry B, 1998. 102(18) 3498-3505.
41. Zhang, J., et al., "Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles". Journal of Physical Chemistry B, 2004. 108(30) 10955-10964.
42. Wang, Y. and N. Toshima, "Preparation of Pd-Pt bimetallic colloids with controllable core/shell structures". Journal of Physical Chemistry B, 1997. 101(27) 5301-5306.
43. 彭文權, "以沈積法製備甲醇燃料電池用之Pt-Ru雙金屬觸媒", 化學工程學系,碩士, 1997.元智工學院
44. Tran, T.D. and S.H. Langer, "Electrochemical measurement of platinum surface areas on particulate conductive supports". Analytical Chemistry, 1993. 65(13) 1805-1807.
45. Markovic, N.M., et al., "Electrooxidation of CO and H2/CO mixtures on Pt(111) in acid solutions". Journal of Physical Chemistry B, 1999. 103(3) 487-495.
46. 胡啟章, 電化學原理與方法. 2002: 五南圖書出版公司.
47. Hwang, B.J., et al., "Structural models and atomic distribution of bimetallic nanoparticles as investigated by x-ray absorption spectroscopy". Journal of the American Chemical Society, 2005. 127(31) 11140-11145.
48. Hara, M., U. Linke, and T. Wandlowski, "Preparation and electrochemical characterization of palladium single crystal electrodes in 0.1 H2SO4 and HClO4: Part I. Low-index phases". Electrochimica Acta, 2007. 52(18) 5733-5748.
49. Lin, Y.-C., et al., "Combined Experimental and Theoretical Investigation of Nanosized Effects of Pt Catalyst on Their Underlying Methanol Electro-Oxidation Activity". The Journal of Physical Chemistry C, 2009. 113(21) 9197-9205.
50. Janssen, M.M.P. and J. Moolhuysen, "Binary systems of platinum and a second metal as oxidation catalysts for methanol fuel cells". Electrochimica Acta, 1976. 21(11) 869-878.
51. Vanderbilt, D., "Soft self-consistent pseudopotentials in a generalized eigenvalue formalism". Physical Review B, 1990. 41(11) 7892-7895.
52. Payne, M.C., et al., "Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients". Reviews of Modern Physics, 1992. 64(4) 1045-1097.
53. Perdew, J.P., et al., "Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation". Physical Review B, 1992. 46(11) 6671-6687.
54. Blochl, P.E., "Projector augmented-wave method". Physical Review B, 1994. 50(24) 17953-17979.
55. Hu, P., et al., "Gradient corrections in density functional theory calculations for surfaces: Co on Pd{110}". Chemical Physics Letters, 1994. 230(6) 501-506.
56. Kresse, G. and D. Joubert, "From ultrasoft pseudopotentials to the projector augmented-wave method". Physical Review B - Condensed Matter and Materials Physics, 1999. 59(3) 1758-1775.
57. Ziesche, P. and H. Eschrig, "Electronic Structure of Solids". 1991.
58. Kresse, G. and J. Hafner, "Ab initio molecular dynamics for liquid metals". Physical Review B, 1993. 47(1) 558-561.
59. Kresse, G. and J. Furthmu?ller, "Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set". Physical Review B - Condensed Matter and Materials Physics, 1996. 54(16) 11169-11186.
60. Kresse, G. and J. Furthmu?ller, "Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set". Computational Materials Science, 1996. 6(1) 15-50.
61. Balbuena, P.B., et al., "Adsorption and dissociation of H2O2 on Pt and Pt - Alloy clusters and surfaces". Journal of Physical Chemistry B, 2006. 110(35) 17452-17459.
62. Gajdos, M., A. Eichler, and J. Hafner, "CO adsorption on close-packed transition and noble metal surfaces: Trends from ab initio calculations". Journal of Physics Condensed Matter, 2004. 16(8) 1141-1164.
63. Xu, Y., A.V. Ruban, and M. Mavrikakis, "Adsorption and Dissociation of O2 on Pt-Co and Pt-Fe Alloys". Journal of the American Chemical Society, 2004. 126(14) 4717-4725.
64. Gasteiger, H.A., et al., "Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs". Applied Catalysis B: Environmental, 2005. 56(1-2 SPEC. ISS.) 9-35.
65. Toshima, N. and T. Yonezawa, "Bimetallic nanoparticles - Novel materials for chemical and physical applications". New Journal of Chemistry, 1998. 22(11) 1179-1201.
66. Li, H., et al., "Design and Preparation of Highly Active Pt-Pd/C Catalyst for the Oxygen Reduction Reaction". The Journal of Physical Chemistry C, 2007. 111(15) 5605-5617.
67. Liu, Z., et al., "Electrochemically roughened palladium electrodes for surface-enhanced Raman spectroscopy: Methodology, mechanism, and application". Journal of Physical Chemistry C, 2007. 111(4) 1770-1775.
68. Zhang, J., et al., "Facile fabrication and unexpected electrocatalytic activity of palladium thin films with hierarchical architectures". Journal of Physical Chemistry C, 2008. 112(36) 13970-13975.
69. Greeley, J. and M. Mavrikakis, "Competitive Paths for Methanol Decomposition on Pt(111)". Journal of the American Chemical Society, 2004. 126(12) 3910-3919.
70. Ruibin, J., et al., "Density Functional Investigation of Methanol Dehydrogenation on Pd(111)". Journal of Physical Chemistry C, 2009. 113(10) 4188-4197.

QR CODE