簡易檢索 / 詳目顯示

研究生: 李俊南
Jun-Nan Lee
論文名稱: 使用漣波控制主動箝位降壓式轉換器之研製
Design and Implementation of Active-Clamp Buck Converter with Ripple-Based Control
指導教授: 林景源
Jing-Yuan Lin
口試委員: 邱煌仁
Huang-Jen Chiu
張佑丞
Yu-Chen Chang
林宜鋒
Yi-Feng Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 77
中文關鍵詞: 主動箝位降壓轉換器零電壓切換漣波控制
外文關鍵詞: Active-clamp, Buck converter, Zero-voltage-switching, Ripple-based control
相關次數: 點閱:310下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著科技發展快速可攜式電子產品已隨處可見。在這些電子產品中電源管理IC為其重要的一部分,其能為電子產品裡各個子系統提供一穩定的電源使其正常運作。如今電源轉換器正朝著更小的佔位面積與更高的轉換效率方向前進,以達到節能的目的。本篇論文提出「使用漣波控制主動箝位降壓式轉換器」,利用主動箝位電路產生一負電流來達成零電壓切換,進一步提升轉換器效率。在開關控制方面使用有別於以往的非互補控制方法,相較於傳統互補控制方法,能在進一步降低轉換器損耗。回授控制採用漣波控制中的自適應關閉時間控制,當輸入電壓、輸出電壓、負載電流改變時,也能維持相同的切換頻率,降低切換式電源的 EMI 問題。在暫態響應方面也較一般的電壓控制模式或是電流控制模式快速。本文採用 TSMC 0.18μm 1P6T18HVG2 製程實現。晶片面積為2.555 × 1.881 mm2。功率級輸入電壓為12 V,輸出電壓為3.3 V,切換頻率為500 kHz,輸出負載電流範圍為200 mA至800 mA。諧振電感與箝位電容分別為1 μH及150 nF,輸出電感與輸出電容分別為27 μH及20 μF。


With the rapid development of technology, portable electronic products have become ubiquitous. Power management ICs are an important part of these electronic products, providing stable power to various subsystems for their proper operation. Power converters are now moving towards smaller area and higher conversion efficiency to achieve energy savings.
This paper introduces the " Active-Clamp Buck Converter with Ripple Based Control". It uses an active clamp circuit to generate negative current for achieving zero-voltage switching, thereby enhancing the converter's efficiency. Unlike traditional complementary control method, a noncomplementary control method is employed for switch control, which helps reduce losses in the converter. The feedback control uses ripple-based adaptive off time control, enabling the converter to maintain the same
switching frequency even when there are changes in input voltage, output voltage, and load current, thereby reducing EMI issues. Additionally, the proposed design exhibits faster transient response compared to conventional voltage mode control or current mode control. The paper is implemented by TSMC 0.18μm 1P6M T18HVG2 process. The size of chip is 2.555 × 1.881 mm². The input voltage is 12 V, output voltage is 3.3 V and switching frequency is 500 kHz. The output load range is 200 mA to 800 mA. The resonant inductor and clamp capacitor are 1 μH and 150 nF. The output inductor and output capacitor are 27 μH and 20 μF.

目 錄 摘 要 i Abstract ii 誌 謝 iii 目 錄 iv 圖索引 vi 表索引 ix 第一章 緒論 1 1.1研究動機與目的 1 1.2論文大綱 2 第二章 主動箝位降壓轉換器之架構與控制方法 4 2.1電路簡介 4 2.2控制方法 5 2.2.1互補控制模式 5 2.2.2非互補控制模式 10 2.3非互補控制主動箝位降壓轉換器之參數設計與分析 13 2.3.1理想情況 14 2.3.2非理想情況 17 2.3.2動態控制 19 第三章 漣波控制基礎 21 3.1漣波控制介紹 21 3.2固定關閉時間控制 21 3.3固定關閉時間控制穩定度分析 23 3.4固定關閉時間控制使用電流補償穩定度分析 26 第四章 轉換器設計與實現 31 4.1轉換器電路實現與整體架構 31 4.2控制電路操作原理 32 4.3自適應關閉時間控制 34 4.4子電路設計 36 4.4.1自適應關閉時間控制:相依電流源 36 4.4.2自適應關閉時間控制:相依電壓源 37 4.4.3負載電流偵測器 38 4.4.4非重疊電路與驅動電路 39 4.4.4電壓位準轉換器 41 4.4.5二級運算放大器與偏壓電流電路 43 第五章 電路規格與模擬結果 45 5.1轉換器規格 45 5.2轉換器模擬波形 46 5.3模擬結果比較與效率比較 49 第六章 晶片量測 52 6.1晶片佈局圖 52 6.2晶片腳位定義與PCB佈局 53 6.3晶片量測 57 6.4量測結果 59 第七章 結論與未來展望 61 7.1結論 61 7.2未來展望 61 參考文獻 63

[1] C. S. Yeh, X. Zhao, and J. S. Lai, “A MHz zero voltage switching (ZVS) tapped-inductor buck converter for wide-input high step-down low power applications,” in Proc. 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia, 2017, pp. 494-499.
[2] M. Kumar, M. Pattnaik, and J. Mishra, “An improved ZVS-PWM buck converter with ZCS auxiliary circuit,” in Proc. TENCON 2017-2017 IEEE Region 10 Conference, 2017, pp. 1279-1284.
[3] F. Marvi, E. Adib, and H. Farzanehfard, “Efficient ZVS synchronous buck converter with extended duty cycle and low-current ripple,” IEEE Transactions on Industrial Electronics, vol. 63, pp. 5403-5409, Apr. 2016.
[4] C. M. Duarte, and I. Barbi, “A new family of ZVS-PWM active clamping DC-to-DC boost converters: analysis, design, and experimentation,” In Proc. Proceedings of Intelec'96-International Telecommunications Energy Conference, 1996, pp. 305-312.
[5] G. Hua, and F. C. Lee, “Soft-switching techniques in PWM converters,” IEEE Transactions on Industrial Electronics, vol. 42, pp. 595-603, Dec. 1995.
[6] C. M. C. Duarte, and I. Barbi, “A family of ZVS-PWM active clamping DC-to-DC converters: synthesis, analysis, design, and experimentation,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 44, pp. 698-704, Aug. 1997.
[7] J. Zhang, X. Huang, X. Wu, and Z. Qian, “A high efficiency flyback converter with new active clamp technique," IEEE Transactions on Power Electronics, vol. 25, pp. 1775-1785, Jul. 2010.
[8] R. Redl, and J. Sun, “Ripple-based control of switching regulators—An overview,” IEEE Transactions on Power Electronics, vol. 24, pp. 2669-2680, Dec. 2009.
[9] K. H. Chen, Power Management Techniques for Integrated Circuit Design. John Wiley & Sons, 2016.
[10] O. Gasparri, R. D. Lorenzo, A. Pidutti, P. D. Groce, and A. Baschirotto, “Dc-dc buck converter with constant off-time peak current mode control,” in Proc. 2020 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS), 2020, pp. 1-4.
[11] S. Nanda, A. S. Panda, and G. L. K. Moganti, “A novel design of a high speed hysteresis-based comparator in 90-nm CMOS technology,” in Proc. 2015 International Conference on Information Processing (ICIP), 2015, pp. 388-391.
[12] S. Nanda, and A. S. Panda, “Design of conventional three-stage CMOS comparator in 90-nm CMOS technology and comparative analysis with its counterparts,” in Proc. 2015 International Conference on Smart Sensors and Systems (IC-SSS), 2015, pp. 1-6.
[13] B. C. Bao, X. Zhang, J. P. Xu, and J. P. Wang, “Critical ESR of output capacitor for stability of fixed off‐time controlled buck converter,” Electronics Letters, vol. 49, pp. 287-288, Feb. 2013.
[14] Y. S. Roh, Y. J. Moon, J. Park, M. G. Jeong, and C. Yoo, “A multiphase synchronous buck converter with a fully integrated current balancing scheme,” IEEE Transactions on Power Electronics, vol. 30, pp. 5159-5169, Sept. 2014.
[15] C. F. Lee, and P. K. T. Mok, “A monolithic current-mode CMOS DC DC converter with on-chip current-sensing technique,” IEEE journal of solid-state circuits, vol. 39, pp. 3-14, Jan. 2004.
[16] Y. Moghe, T. Lehmann, and T. Piessens, “Nanosecond Delay Floating High Voltage Level Shifters in a 0.35μm HV-CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 46, pp. 485-497, Dec. 2010.
[17] B. D. Choi, “Enhancement of current driving capability in data driver ICs for plasma display panels,” IEEE Transactions on Consumer Electronics, vol. 55, pp. 992-997, Aug. 2009.
[18] Z. Liu, L. Cong, and H. Lee, “Design of on-chip gate drivers with power-efficient high-speed level shifting and dynamic timing control for high-voltage synchronous switching power converters,” IEEE Journal of Solid-State Circuits, vol. 50, pp. 1463-1477, May. 2015.
[19] 王信雄,開關轉換器-控制理論與設計實務,立錡科技股份有限公司,2015年。
[20] 吳義利,切換式電源轉換器,第四版,文笙出版社,2022年。

無法下載圖示 全文公開日期 2026/07/31 (校內網路)
全文公開日期 2026/07/31 (校外網路)
全文公開日期 2026/07/31 (國家圖書館:臺灣博碩士論文系統)
QR CODE